1
|
Huang J, Ojambati OS, Climent C, Cuartero-Gonzalez A, Elliott E, Feist J, Fernández-Domínguez AI, Baumberg JJ. Influence of Quadrupolar Molecular Transitions within Plasmonic Cavities. ACS NANO 2024; 18:14487-14495. [PMID: 38787356 PMCID: PMC11155255 DOI: 10.1021/acsnano.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Optical nanocavities have revolutionized the manipulation of radiative properties of molecular and semiconductor emitters. Here, we investigate the amplified photoluminescence arising from exciting a dark transition of β-carotene molecules embedded within plasmonic nanocavities. Integrating a molecular monolayer into nanoparticle-on-mirror nanostructures unveils enhancements surpassing 4 orders of magnitude in the initially light-forbidden excitation. Such pronounced enhancements transcend conventional dipolar mechanisms, underscoring the presence of alternative enhancement pathways. Notably, Fourier-plane scattering spectroscopy shows that the photoluminescence excitation resonance aligns with a higher-order plasmonic cavity mode, which supports strong field gradients. Combining quantum chemistry calculations with electromagnetic simulations reveals an important interplay between the Franck-Condon quadrupole and Herzberg-Teller dipole contributions in governing the absorption characteristics of this dark transition. In contrast to free space, the quadrupole moment plays a significant role in photoluminescence enhancement within nanoparticle-on-mirror cavities. These findings provide an approach to access optically inactive transitions, promising advancements in spectroscopy and sensing applications.
Collapse
Affiliation(s)
- Junyang Huang
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Oluwafemi S. Ojambati
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Clàudia Climent
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alvaro Cuartero-Gonzalez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
- Mechanical
Engineering Department, ICAI, Universidad
Pontificia Comillas, Madrid 28015, Spain
| | - Eoin Elliott
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Johannes Feist
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
| | - Antonio I. Fernández-Domínguez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
2
|
Duan S, Tian G, Luo Y. Theoretical and computational methods for tip- and surface-enhanced Raman scattering. Chem Soc Rev 2024; 53:5083-5117. [PMID: 38596836 DOI: 10.1039/d3cs01070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Raman spectroscopy is a versatile tool for acquiring molecular structure information. The incorporation of plasmonic fields has significantly enhanced the sensitivity and resolution of surface-enhanced Raman scattering (SERS) and tip-enhanced Raman spectroscopy (TERS). The strong spatial confinement effect of plasmonic fields has challenged the conventional Raman theory, in which a plane wave approximation for the light has been adopted. In this review, we comprehensively survey the progress of a generalized theory for SERS and TERS in the framework of effective field Hamiltonian (EFH). With this approach, all characteristics of localized plasmonic fields can be well taken into account. By employing EFH, quantitative simulations at the first-principles level for state-of-the-art experimental observations have been achieved, revealing the underlying intrinsic physics in the measurements. The predictive power of EFH is demonstrated by several new phenomena generated from the intrinsic spatial, momentum, time, and energy structures of the localized plasmonic field. The corresponding experimental verifications are also carried out briefly. A comprehensive computational package for modeling of SERS and TERS at the first-principles level is introduced. Finally, we provide an outlook on the future developments of theory and experiments for SERS and TERS.
Collapse
Affiliation(s)
- Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Guangjun Tian
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yi Luo
- Hefei National Research Center for Physical Science at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
3
|
Alves E, Péchou R, Coratger R, Mlayah A. Gap plasmon modes and plasmon-exciton coupling in a hybrid Au/MoSe 2/Au tunneling junction. OPTICS EXPRESS 2023; 31:12549-12561. [PMID: 37157412 DOI: 10.1364/oe.479620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The light-matter interaction between plasmonic nanocavity modes and excitons at the nanometer scale is here addressed in the scanning tunneling microscope configuration where an MoSe2 monolayer is located between the tip and the substrate. We investigate by optical excitation the electromagnetic modes of this hybrid Au/MoSe2/Au tunneling junction using numerical simulations where electron tunneling and the anisotropic character of the MoSe2 layer are taken into account. In particular, we pointed out gap plasmon modes and Fano-type plasmon-exciton coupling taking place at the MoSe2/Au substrate interface. The spectral properties and spatial localization of these modes are studied as a function of the tunneling parameters and incident polarization.
Collapse
|
4
|
Martín-Jiménez A, Jover Ó, Lauwaet K, Granados D, Miranda R, Otero R. Selectively Addressing Plasmonic Modes and Excitonic States in a Nanocavity Hosting a Quantum Emitter. NANO LETTERS 2022; 22:9283-9289. [PMID: 36441511 PMCID: PMC9756330 DOI: 10.1021/acs.nanolett.2c02758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Controlling the interaction between the excitonic states of a quantum emitter and the plasmonic modes of a nanocavity is key for the development of quantum information processing devices. In this Letter we demonstrate that the tunnel electroluminescence of electrically insulated C60 nanocrystals enclosed in the plasmonic nanocavity at the junction of a scanning tunneling microscope can be switched from a broad emission spectrum, revealing the plasmonic modes of the cavity, to a narrow band emission, displaying only the excitonic states of the C60 molecules by changing the bias voltage applied to the junction. Interestingly, excitonic emission dominates the spectra in the high-voltage region in which the simultaneously acquired inelastic rate is low, demonstrating that the excitons cannot be created by an inelastic tunnel process. These results point toward new possible mechanisms for tunnel electroluminescence of quantum emitters and offer new avenues to develop electrically tunable nanoscale light sources.
Collapse
Affiliation(s)
| | - Óscar Jover
- IMDEA-Nanoscience
Center, 28049Madrid, Spain
- Departamento
de Física de la Materia Condensada & IFIMAC, Universidad Autónoma de Madrid, 28049Madrid, Spain
| | | | | | - Rodolfo Miranda
- IMDEA-Nanoscience
Center, 28049Madrid, Spain
- Departamento
de Física de la Materia Condensada & IFIMAC, Universidad Autónoma de Madrid, 28049Madrid, Spain
| | - Roberto Otero
- IMDEA-Nanoscience
Center, 28049Madrid, Spain
- Departamento
de Física de la Materia Condensada & IFIMAC, Universidad Autónoma de Madrid, 28049Madrid, Spain
| |
Collapse
|
5
|
Tian G, Qiu F, Song C, Duan S, Luo Y. Electric Field Controlled Single-Molecule Optical Switch by Through-Space Charge Transfer State. J Phys Chem Lett 2021; 12:9094-9099. [PMID: 34520213 DOI: 10.1021/acs.jpclett.1c02578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling the photon emission property of a single molecule is an important goal for nano-optics. We propose here a new mechanism for a single-molecule optical switch that utilizes the in situ electric field (EF) in biased metallic nanojunctions to control photon emission of molecules with through-space charge transfer (TSCT) excited states. The EF-induced Stark effect is capable of flipping the order of the bright noncharge transfer state and dark TSCT state, resulting in the anticipated switching behavior. The proposed mechanism was theoretically verified by scanning tunneling microscope-induced electroluminescence from a naphtalenediimide cyclophane molecule under experimentally accessible conditions. Simulations show that the proposed switching effect can be obtained by changing either bias polarity, which alters the polarization of the field, or tip-height, which affects the magnitude of the field. Our finding indicates that the in situ EF could play an important role in the design of optoelectronic molecular devices.
Collapse
Affiliation(s)
- Guangjun Tian
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Feifei Qiu
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Ce Song
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| |
Collapse
|
6
|
Petrov EG, Gorbach VV, Ragulya AV, Lyubchik A, Lyubchik S. Gate-tunable electroluminescence in Aviram-Ratner-type molecules: Kinetic description. J Chem Phys 2020; 153:084105. [PMID: 32872853 DOI: 10.1063/5.0018574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A theoretical study of the mechanisms of electroluminescence (EL) generation in photoactive molecules with donor and acceptor centers linked by saturated σ-bonds (molecules of the Aviram-Ratner-type) is presented. The approach is based on the kinetics of single-electron transitions between many-body molecular states. This study shows that the EL polarity arises due to asymmetric coupling of molecular orbitals of the photochromic part of the molecule to the electrodes. The gate voltage controls the power of the EL through the occupancy of the excited singlet state. The shifting of the orbital energies forms a resonant or a non-resonant path for the transmission of electrons through the molecule. The action of the gate voltage is reflected in specific critical voltages. An analytical dependence of the critical voltages on the energies of molecular states involved in the formation of EL, as well as on the gate voltage, was derived for both positive and negative polarities. Conditions under which the gate voltage lowers the absolute value of the bias voltage that is responsible for the activation of the resonance mechanism of EL formation were also established. This is an important factor in control of EL in molecular junctions.
Collapse
Affiliation(s)
- Elmar G Petrov
- Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna Street 14-B, UA-03680 Kiev, Ukraine
| | | | | | | | - Svetlana Lyubchik
- REQUIMTE, Departomento Quimica, FCT, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| |
Collapse
|
7
|
Schultz JF, Li S, Jiang S, Jiang N. Optical scanning tunneling microscopy based chemical imaging and spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:463001. [PMID: 32702674 DOI: 10.1088/1361-648x/aba8c7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Through coupling optical processes with the scanning tunneling microscope (STM), single-molecule chemistry and physics have been investigated at the ultimate spatial and temporal limit. Electrons and photons can be used to drive interactions and reactions in chemical systems and simultaneously probe their characteristics and consequences. In this review we introduce and review methods to couple optical imaging and spectroscopy with scanning tunneling microscopy. The integration of the STM and optical spectroscopy provides new insights into individual molecular adsorbates, surface-supported molecular assemblies, and two-dimensional materials with subnanoscale resolution, enabling the fundamental study of chemistry at the spatial and temporal limit. The inelastic scattering of photons by molecules and materials, that results in unique and sensitive vibrational fingerprints, will be considered with tip-enhanced Raman spectroscopy. STM-induced luminescence examines the intrinsic luminescence of organic adsorbates and their energy transfer and charge transfer processes with their surroundings. We also provide a survey of recent efforts to probe the dynamics of optical excitation at the molecular level with scanning tunneling microscopy in the context of light-induced photophysical and photochemical transformations.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, United States of America
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Song Jiang
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| |
Collapse
|
8
|
Qiu F, Song C, Li L, Wei Y, Tian G. First-principles study on vibrationally resolved fluorescence of fused 5,15-(diphenyl)-10,20-(dibromo)porphyrin molecule. J Chem Phys 2018; 149:074312. [PMID: 30134706 DOI: 10.1063/1.5036618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The vibrationally resolved fluorescence spectrum of a narrow-line single-molecule transducer, fused 5,15-(diphenyl)-10,20-(dibromo)porphyrin (fused-H2P) molecule, has been calculated by time-dependent density functional theory with the inclusion of both Franck-Condon and Herzberg-Teller contributions. Analytical transition dipole derivatives are used for the calculations of Herzberg-Teller terms to eliminate the possible errors caused by numerical differentials. The performance of different exchange-correlation functionals including B3LYP, ωB97X-D, and M06-2X has been examined. The comparison with the high-resolution experimental emission spectrum indicates that all three functionals can satisfactorily describe the fluorescence spectral profile, while ωB97X-D and M06-2X give slightly better excitation energy than B3LYP. Detailed analysis shows that the fluorescence spectrum is dominated by the Franck-Condon contribution, while the Herzberg-Teller term contributes mostly to its low energy tail. It is found that the size of the basis set has limited influence on the fluorescence spectrum, and a standard 6-31G(d, p) basis set is adequate for the purpose. The substitution of terthiophene side chains is found to have minor effects on the fluorescence spectrum. Our study provides unambitious assignments for all the vibronic structures in the experimental spectrum.
Collapse
Affiliation(s)
- Feifei Qiu
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Ce Song
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Li Li
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yong Wei
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Guangjun Tian
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
9
|
Kröger J, Doppagne B, Scheurer F, Schull G. Fano Description of Single-Hydrocarbon Fluorescence Excited by a Scanning Tunneling Microscope. NANO LETTERS 2018; 18:3407-3413. [PMID: 29719154 DOI: 10.1021/acs.nanolett.8b00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture.
Collapse
Affiliation(s)
- Jörg Kröger
- Institut de Physique et Chimie des Matériaux de Strasbourg , Université de Strasbourg, CNRS, IPCMS, UMR 7504 , F-67000 Strasbourg , France
| | - Benjamin Doppagne
- Institut de Physique et Chimie des Matériaux de Strasbourg , Université de Strasbourg, CNRS, IPCMS, UMR 7504 , F-67000 Strasbourg , France
| | - Fabrice Scheurer
- Institut de Physique et Chimie des Matériaux de Strasbourg , Université de Strasbourg, CNRS, IPCMS, UMR 7504 , F-67000 Strasbourg , France
| | - Guillaume Schull
- Institut de Physique et Chimie des Matériaux de Strasbourg , Université de Strasbourg, CNRS, IPCMS, UMR 7504 , F-67000 Strasbourg , France
| |
Collapse
|
10
|
Signatures of Plexitonic States in Molecular Electroluminescence. Sci Rep 2018; 8:2314. [PMID: 29396443 PMCID: PMC5797164 DOI: 10.1038/s41598-018-19382-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
Abstract
We develop a quantum master equation (QME) approach to investigate the electroluminesence (EL) of molecules confined between metallic electrodes and coupled to quantum plasmonic modes. Within our general state-based framework, we describe electronic tunneling, vibrational damping, environmental dephasing, and the quantum coherent dynamics of coupled quantum electromagnetic field modes. As an example, we calculate the STM-induced spontaneous emission of a tetraphenylporphyrin (TPP) molecule coupled to a nanocavity plasmon. In the weak molecular exciton-plasmon coupling regime we find excellent agreement with experiments, including above-threshold hot luminescence, an effect not described by previous semiclassical calculations. In the strong coupling regime, we analyze the spectral features indicative of the formation of plexcitonic states.
Collapse
|
11
|
Kuhnke K, Große C, Merino P, Kern K. Atomic-Scale Imaging and Spectroscopy of Electroluminescence at Molecular Interfaces. Chem Rev 2017; 117:5174-5222. [DOI: 10.1021/acs.chemrev.6b00645] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Klaus Kuhnke
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
| | - Christoph Große
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
| | - Pablo Merino
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
| | - Klaus Kern
- Max-Planck-Institut für Festkörperforschung, Stuttgart 70569, Germany
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
12
|
Große C, Merino P, Rosławska A, Gunnarsson O, Kuhnke K, Kern K. Submolecular Electroluminescence Mapping of Organic Semiconductors. ACS NANO 2017; 11:1230-1237. [PMID: 28085244 DOI: 10.1021/acsnano.6b08471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The electroluminescence of organic films is the central aspect in organic light emitting diodes (OLEDs) and widely used in current display technology. However, its spatial variation on the molecular scale is essentially unexplored. Here, we address this issue by using scanning tunneling microscopy (STM) and present an in-depth study of the electroluminescence from thin C60 films (<10 monolayers) on Ag(111) and Au(111) surfaces. Similar to an OLED, the metal substrate and STM tip inject complementary charge carriers that may recombine within the molecular film; however, the atomically defined charge injection by the tip enables mapping of the local electroluminescence down to the submolecular scale. We show that the radiative recombination in solid C60 is restricted to various structural defects, whose emission characteristics can be addressed individually. The emission fine structure reveals a coupling to Jahn-Teller active vibrational modes of C60, which implies that its parity-forbidden lowest singlet transition becomes locally allowed at the emission centers. At lateral distances of a few nanometers, only a weak emission from tip-induced plasmons is detectable. Their excitation evidences the injection of both charge carrier types and confirms that they are unable to recombine radiatively at positions far from structural defects. Finally, we demonstrate that the molecular orbital pattern visible in electroluminescence maps enables an unambiguous discrimination between the intrinsic radiative recombination of electron-hole pairs in the organic film and the technique-related emission of tip-induced plasmons. This capability is essential to consolidate STM as a tool to explore the light generation from organic films on the nanoscale.
Collapse
Affiliation(s)
- Christoph Große
- Max-Planck-Institut für Festkörperforschung , Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Pablo Merino
- Max-Planck-Institut für Festkörperforschung , Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Anna Rosławska
- Max-Planck-Institut für Festkörperforschung , Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Olle Gunnarsson
- Max-Planck-Institut für Festkörperforschung , Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kuhnke
- Max-Planck-Institut für Festkörperforschung , Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kern
- Max-Planck-Institut für Festkörperforschung , Heisenbergstraße 1, 70569 Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
He Y, Kröger J, Wang Y. Organic Multilayer Films Studied by Scanning Tunneling Microscopy. Chemphyschem 2017; 18:429-450. [PMID: 27973695 DOI: 10.1002/cphc.201600979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/04/2016] [Indexed: 11/11/2022]
Abstract
This Minireview focuses exclusively on work with scanning tunneling microscopy to study the self-assembled multilayer films (SAMTs) of organic molecules. The π-conjugated organic molecules form different structures within different monolayers on various substrates. The interplay between molecule-substrate and intermolecular interactions plays a key role in determining the stacking mode of organic multilayer films. Different substrates strongly influence the organic-film growth and electronic properties of the organic molecules. Geometric and electronic structures of SAMTs are important factors that may determine device performance. In addition to the inorganic interface, this Minireview addresses the organic-organic interface. Homo- and hetero-SAMTs of organic molecules are also considered. The subtle interplay between structural and electronic characteristics, on one hand, and functionality and reactivity, on the other hand, are highlighted.
Collapse
Affiliation(s)
- Yang He
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, P.R. China
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, P.R. China.,Peking University Information Technology Institute (Tianjin Binhai), Tianjin, 300457, P.R. China
| |
Collapse
|
14
|
Meng Q, Zhang Y, Cai H, Liao Y, Zhang Y, Wang X, Okamoto T, Dong Z. Fabricating two-dimensional plasmonic photonic crystals for the modulation of nanocavity plasmon mode. NANOSCALE 2016; 8:18855-18859. [PMID: 27808322 DOI: 10.1039/c6nr07322k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we demonstrate the fabrication of two-dimensional plasmonic photonic crystal (PPC) nanostructures to modulate the nanocavity plasmon (NCP) mode in the scanning tunneling microscope (STM) junction. Theoretically optimized PPC structures with particular defect modes were fabricated and used as the substrates for STM induced luminescence (STML) research. Stable STM imaging and STML studies were achieved by covering a suspended graphene sheet on top of periodic PPC structures. Our preliminary STML results suggest that the NCP emission can be selectively enhanced by the defect mode of the PPC structures, which paves the way for future studies on the engineering of electrically driven single-molecule photon sources and plasmonic lasing through tuning NCP modes.
Collapse
Affiliation(s)
- Qiushi Meng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rogez B, Cao S, Dujardin G, Comtet G, Moal EL, Mayne A, Boer-Duchemin E. The mechanism of light emission from a scanning tunnelling microscope operating in air. NANOTECHNOLOGY 2016; 27:465201. [PMID: 27734808 DOI: 10.1088/0957-4484/27/46/465201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The scanning tunnelling microscope (STM) may be used as a low-energy, electrical nanosource of surface plasmon polaritons and light. In this article, we demonstrate that the optimum mode of operation of the STM for maximum photon emission is completely different in air than in vacuum. To this end, we investigate the emission of photons, the variation in the relative tip-sample distance and the measured current as a function of time for an STM operating in air. Contrary to the case of an STM operating in vacuum, the measured current between the tip and sample for an STM in air is very unstable (rapidly fluctuating in time) when the applied voltage between the tip and sample is in the ∼1.5-3 V range (i.e., in the energy range of visible photons). The photon emission occurs in short (50 μs) bursts when the STM tip is closest to the sample. The current instabilities are shown to be a key ingredient for producing intense light emission from an STM operating in air (photon emission rate several orders of magnitude higher than for stable current). These results are explained in terms of the interplay between the tunnel current and the electrochemical current in the ubiquitous thin water layer that exists when working in air.
Collapse
Affiliation(s)
- B Rogez
- Department of Cellular Physiology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Große C, Gunnarsson O, Merino P, Kuhnke K, Kern K. Nanoscale Imaging of Charge Carrier and Exciton Trapping at Structural Defects in Organic Semiconductors. NANO LETTERS 2016; 16:2084-2089. [PMID: 26871739 DOI: 10.1021/acs.nanolett.6b00190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Charge carrier and exciton trapping in organic semiconductors crucially determine the performance of organic (opto-)electronic devices such as organic field-effect transistors, light-emitting diodes, or solar cells. However, the microscopic origin of the relevant traps generally remains unclear, as most spectroscopic techniques are unable to simultaneously probe the electronic and morphological structure of individual traps. Here, we employ low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) as well as tight-binding calculations derived from ab initio calculations to image the localized electronic states arising at structural defects in thin C60 films (<10 ML). The spatially and spectrally resolved STM-induced luminescence at these states reveals an enhanced radiative decay of excitons, which is interpreted in terms of the local symmetry lowering and the trapping of excitons by an X-trap. The combined mapping of the STM-induced luminescence, electronic structure, and morphology thus provides new insights into the origin and characteristics of individual exciton traps in organic semiconductors and offers new avenues to study charge carrier and exciton dynamics on molecular scales.
Collapse
Affiliation(s)
- Christoph Große
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Olle Gunnarsson
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Pablo Merino
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kuhnke
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kern
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Identifying the Assembly Configuration and Fluorescence Spectra of Nanoscale Zinc-Tetraphenylporphyrin Aggregates with Scanning Tunneling Microscopy. Sci Rep 2016; 6:22756. [PMID: 26948654 PMCID: PMC4780111 DOI: 10.1038/srep22756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/19/2016] [Indexed: 11/23/2022] Open
Abstract
ZnTPP (Zinc-Tetraphenylporphyrin) is one of the most common nanostructured materials, having high stability and excellent optoelectronic properties. In this paper, the fluorescence features of self-assembled ZnTPP monomers and aggregates on Au(111) surface are investigated in detail on the nanometer scale with scanning tunneling microscopy (STM). The formation of ZnTPP dimers is found in thick layers of a layer-by-layer molecular assembly on Au substrate with its specific molecular arrangement well characterized. Tip-induced luminescence shows a red shift from tilted dimers comparing with the behavior from monomers, which can be attributed to the change of vibrational states due to the intermolecular interaction and the increasing dielectric effect. The nanoscale configuration dependence of electroluminescence is demonstrated to provide a powerful tool aiding the design of functional molecular photoelectric devices.
Collapse
|
18
|
Chen G, Li XG, Dong ZC. Full Quantum Theory of Molecular Hot-Electroluminescence in Scanning Tunneling Microscope Tunnel Junctions. CHINESE J CHEM PHYS 2015. [DOI: 10.1063/1674-0068/28/cjcp1505106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
19
|
Martínez-Blanco J, Fölsch S. Light emission from Ag(111) driven by inelastic tunneling in the field emission regime. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:255008. [PMID: 26045477 DOI: 10.1088/0953-8984/27/25/255008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We study the light emission from a Ag(111) surface when the bias voltage on a scanning tunneling microscope (STM) junction is ramped into the field emission regime. Above the vacuum level, scanning tunneling spectroscopy (STS) shows a series of well defined resonances associated with the image states of the surface, which are Stark shifted due to the electric field provided by the STM tip. We present photon-energy resolved measurements that unambiguously show that the mechanism for light emission is the radiative decay of surface localized plasmons excited by the electrons that tunnel inelastically into the Stark shifted image states. Our work illustrates the effect of the tip radius both in the STS spectrum and the light emission maps by repeating the experiment with different tips.
Collapse
Affiliation(s)
- Jesús Martínez-Blanco
- Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany
| | | |
Collapse
|
20
|
Chen G, Li XG, Zhang ZY, Dong ZC. Molecular hot electroluminescence due to strongly enhanced spontaneous emission rates in a plasmonic nanocavity. NANOSCALE 2015; 7:2442-2449. [PMID: 25565003 DOI: 10.1039/c4nr06519k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have recently demonstrated anomalous relaxationless hot electroluminescence from molecules in the tunnel junction of a scanning tunneling microscope [Dong et al., Nat. Photonics, 2010, 4, 50]. In the present paper, based on physically realistic parameters, we aim to unravel the underlying physical mechanism using a multiscale modeling approach that combines classical generalized Mie theory with the quantum master equation. We find that the nanocavity-plasmon-tuned spontaneous emission rate plays a crucial role in shaping the spectral profile. In particular, on resonance, the radiative decay rate can be enhanced by three-to-five orders of magnitude, which enables the radiative process to occur on the lifetime scale of picoseconds and become competitive to the vibrational relaxation. Such a large Purcell effect opens up new emission channels to generate the hot luminescence that arises directly from higher vibronic levels of the molecular excited state. We also stress that the critical role of resonant plasmonic nanocavities in tunneling electron induced molecular luminescence is to enhance the spontaneous radiative decay through plasmon enhanced vacuum fluctuations rather than to generate an efficient plasmon stimulated emission process. This improved understanding has been partly overlooked in previous studies but is believed to be very important for further developments of molecular plasmonics and optoelectronics.
Collapse
Affiliation(s)
- Gong Chen
- International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | |
Collapse
|
21
|
Lutz T, Grosse C, Dette C, Kabakchiev A, Schramm F, Ruben M, Gutzler R, Kuhnke K, Schlickum U, Kern K. Molecular orbital gates for plasmon excitation. NANO LETTERS 2013; 13:2846-2850. [PMID: 23688309 DOI: 10.1021/nl401177b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Future combinations of plasmonics with nanometer-sized electronic circuits require strategies to control the electrical excitation of plasmons at the length scale of individual molecules. A unique tool to study the electrical plasmon excitation with ultimate resolution is scanning tunneling microscopy (STM). Inelastic tunnel processes generate plasmons in the tunnel gap that partially radiate into the far field where they are detectable as photons. Here we employ STM to study individual tris-(phenylpyridine)-iridium complexes on a C60 monolayer, and investigate the influence of their electronic structure on the plasmon excitation between the Ag(111) substrate and an Ag-covered Au tip. We demonstrate that the highest occupied molecular orbital serves as a spatially and energetically confined nanogate for plasmon excitation. This opens the way for using molecular tunnel junctions as electrically controlled plasmon sources.
Collapse
Affiliation(s)
- Theresa Lutz
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tian G, Luo Y. Fluorescence and Phosphorescence of Single C60Molecules as Stimulated by a Scanning Tunneling Microscope. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Tian G, Luo Y. Fluorescence and Phosphorescence of Single C60Molecules as Stimulated by a Scanning Tunneling Microscope. Angew Chem Int Ed Engl 2013; 52:4814-7. [DOI: 10.1002/anie.201301209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Indexed: 11/09/2022]
|
24
|
Geng F, Zhang Y, Yu Y, Kuang Y, Liao Y, Dong Z, Hou J. Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111). OPTICS EXPRESS 2012. [PMID: 23187525 DOI: 10.1364/oe.20.026725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We investigate the modulation of C60 monolayers on the nanocavity plasmonic (NCP) emission on Au(111) by tunneling electron excitation from a scanning tunneling microscope (STM) tip. STM induced luminescence spectra show not only suppressed emission, but also significant redshift of NCP emission bands on the C60 molecules relative to the bare metal surface. The redshift, together with the bias- and coverage-dependent emission feature, indicates that the C60 molecules act beyond a pure dielectric spacer, their electronic states are heavily involved in the inelastic tunneling process for plasmonic emission. A modified quantum cutoff relation is proposed to explain qualitatively the observed emission feature at both bias polarities. We also demonstrate molecularly resolved optical contrast on the C60 monolayer and discuss the contrast mechanism briefly.
Collapse
Affiliation(s)
- Feng Geng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang C, Gao B, Chen LG, Meng QS, Yang H, Zhang R, Tao X, Gao HY, Liao Y, Dong ZC. Fabrication of silver tips for scanning tunneling microscope induced luminescence. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:083101. [PMID: 21895227 DOI: 10.1063/1.3617456] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We describe a reliable fabrication procedure of silver tips for scanning tunneling microscope (STM) induced luminescence experiments. The tip was first etched electrochemically to yield a sharp cone shape using selected electrolyte solutions and then sputter cleaned in ultrahigh vacuum to remove surface oxidation. The tip status, in particular the tip induced plasmon mode and its emission intensity, can be further tuned through field emission and voltage pulse. The quality of silver tips thus fabricated not only offers atomically resolved STM imaging, but more importantly, also allows us to perform challenging "color" photon mapping with emission spectra taken at each pixel simultaneously during the STM scan under relatively small tunnel currents and relatively short exposure time.
Collapse
Affiliation(s)
- C Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kabakchiev A, Kuhnke K, Lutz T, Kern K. Electroluminescence from individual pentacene nanocrystals. Chemphyschem 2011; 11:3412-6. [PMID: 21031403 DOI: 10.1002/cphc.201000531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Kabakchiev
- Max-Planck Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
27
|
|
28
|
Romero MJ, Morfa AJ, Reilly TH, van de Lagemaat J, Al-Jassim M. Nanoscale imaging of exciton transport in organic photovoltaic semiconductors by tip-enhanced tunneling luminescence. NANO LETTERS 2009; 9:3904-3908. [PMID: 19751068 DOI: 10.1021/nl902105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In organic solar cells, the efficiency of the exciton transport and dissociation across donor-acceptor (D/A) interfaces is controlled by the nanoscale distribution of the donor and acceptor phases. The observation of photoluminescence quenching is often used as confirmation for efficient exciton dissociation but provides no information on the nanoscopic nature of the exciton transport. Here we demonstrate nanoscale imaging of the exciton transport in films consisting of the conjugated polymer poly(3-hexylthiophene) (P3HT, electron donor) blended with the C60 derivative 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM, electron acceptor) by a tunneling luminescence spectroscopy based on atomic force microscopy. The excitonic luminescence is significantly enhanced when the conjugated polymer is coupled to the plasmon excitation at the tip (tip-enhanced luminescence). This effect allows one to dramatically improve the detection efficiency of the excitonic luminescence and, consequently, resolve individual domains of the conjugated polymer in which the exciton will recombine before dissociation at the D/A interface. Under thermal annealing conditions promoting the segregation of the donor and acceptor phases, a clear increase of the luminescence is seen from polymer-rich regions, consistent with domains of dimensions much larger than the exciton diffusion length. The described scanning luminescence microscopy can thus be applied to the optimization of the blends used in solar cells.
Collapse
Affiliation(s)
- Manuel J Romero
- National Renewable Energy Laboratory (NREL), 1617 Cole Boulevard, Golden, Colorado 80401-3393,USA.
| | | | | | | | | |
Collapse
|