1
|
Barclay MS, Wright ND, Cavanaugh P, Pensack RD, Martin EW, Turner DB. Ultrabroadband two-dimensional electronic spectroscopy in the pump-probe geometry using conventional optics. OPTICS LETTERS 2024; 49:2065-2068. [PMID: 38621077 DOI: 10.1364/ol.519387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
We report ultrabroadband two-dimensional electronic spectroscopy (2D ES) measurements obtained in the pump-probe geometry using conventional optics. A phase-stabilized Michelson interferometer provides the pump-pulse delay interval, τ1, necessary to obtain the excitation-frequency dimension. Spectral resolution of the probe beam provides the detection-frequency dimension, ω3. The interferometer incorporates active phase stabilization via a piezo stage and feedback from interference of a continuous-wave reference laser detected in quadrature. To demonstrate the method, we measured a well-characterized laser dye sample and obtained the known peak structure. The vibronic peaks are modulated as a function of the waiting time, τ2, by vibrational wave packets. The interferometer simplifies ultrabroadband 2D ES measurements and analysis.
Collapse
|
2
|
Tiwari V, Li X, Li Z, Jacobs IE, Duan HG, Sirringhaus H, Miller RJD, Jha A. Multitype Electronic Interactions in Precursor Solutions of Molecular Doped P3HT Polymer. J Phys Chem B 2024; 128:3249-3257. [PMID: 38507573 DOI: 10.1021/acs.jpcb.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Spin-casting of molecularly doped polymer solution mixtures is one of the commonly used methods to obtain conductive organic semiconductor films. In spin-casted films, electronic interaction between the dopant and polymer is one of the crucial factors that dictates the doping efficiency. Here, we investigate excitonic couplings using ultrafast two-dimensional electronic spectroscopy to examine the different types of electronic interactions in ion pairs of the prototype F4TCNQ-doped P3HT polymer system in a precursor solution mixture for spin-casting. Off-diagonal peaks in the 2D spectra clearly establish the excitonic coupling between P3HT+ and F4TCNQ- ions in solution. The observed excitonic coupling is the direct manifestation of a Coulombic interaction between the ion pair. The excited-state lifetime of F4TCNQ- in ion pairs shows biexponential decay at 30 and 200 fs, which hints toward the presence of a heterogeneous population with different interaction strengths. To examine the nature of these different types of interactions in solution mixtures, we study the system using molecular dynamics simulations on a fully solvated model employing the generalized Amber force field. We retrieve three dominant interaction modes of F4TCNQ anions with P3HT: side chain, π-stack, and slipped stack. To quantify these interactions, we complement our studies with electronic structure calculations, which reveal the excitonic coupling strengths of ∼ 75 cm-1 for side chain, ∼ 150 cm-1 for π-π-stack, and ∼69 cm-1 for slipped stack. These various interaction modes provide information about the key geometries of the seed structures in precursor solution mixtures, which may determine the final structures in spin-casted films. The insights gained from our study may guide new strategies to control and ultimately tune Coulomb interactions in polymer-dopant solutions.
Collapse
Affiliation(s)
- Vandana Tiwari
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Xin Li
- Division of Theoretical Chemistry & Biology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University Nantong, Jiangsu 226010, China
| | - Ian E Jacobs
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Hong-Guang Duan
- Department of Physics, School of Physical Science & Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Henning Sirringhaus
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - R J Dwayne Miller
- Departments of Chemistry & Physics, University of Toronto, Toronto M5S 3H6, Canada
| | - Ajay Jha
- Rosalind Franklin Institute, Harwell, Oxfordshire OX11 0QX, U.K
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K
| |
Collapse
|
3
|
Tsubouchi M, Ishii N, Kagotani Y, Shimizu R, Fujita T, Adachi M, Itakura R. Beat-frequency-resolved two-dimensional electronic spectroscopy: disentangling vibrational coherences in artificial fluorescent proteins with sub-10-fs visible laser pulses. OPTICS EXPRESS 2023; 31:6890-6906. [PMID: 36823935 DOI: 10.1364/oe.480505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
We perform a beat-frequency-resolved analysis for two-dimensional electronic spectroscopy using a high-speed and stable 2D electronic spectrometer and few-cycle visible laser pulses to disentangle the vibrational coherences in an artificial fluorescent protein. We develop a highly stable ultrashort light source that generates 5.3-fs visible pulses with a pulse energy of 4.7 µJ at a repetition rate of 10 kHz using multi-plate pulse compression and laser filamentation in a gas cell. The above-5.3-fs laser pulses together with a high-speed multichannel detector enable us to measure a series of 2D electronic spectra, which are resolved in terms of beat frequency related to vibrational coherence. We successfully extract the discrete vibrational peaks behind the inhomogeneous broadening in the absorption spectra and the vibrational quantum beats of the excited electronic state behind the strong incoherent population background in the typical 2D electronic spectra.
Collapse
|
4
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
5
|
Mewes L, Ingle RA, Al Haddad A, Chergui M. Broadband visible two-dimensional spectroscopy of molecular dyes. J Chem Phys 2021; 155:034201. [PMID: 34293898 DOI: 10.1063/5.0053554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional Fourier transform spectroscopy is a promising technique to study ultrafast molecular dynamics. Similar to transient absorption spectroscopy, a more complete picture of the dynamics requires broadband laser pulses to observe transient changes over a large enough bandwidth, exceeding the inhomogeneous width of electronic transitions, as well as the separation between the electronic or vibronic transitions of interest. Here, we present visible broadband 2D spectra of a series of dye molecules and report vibrational coherences with frequencies up to ∼1400 cm-1 that were obtained after improvements to our existing two-dimensional Fourier transform setup [Al Haddad et al., Opt. Lett. 40, 312-315 (2015)]. The experiment uses white light from a hollow core fiber, allowing us to acquire 2D spectra with a bandwidth of 200 nm, in a range between 500 and 800 nm, and with a temporal resolution of 10-15 fs. 2D spectra of nile blue, rhodamine 800, terylene diimide, and pinacyanol iodide show vibronic spectral features with at least one vibrational mode and reveal information about structural motion via coherent oscillations of the 2D signals during the population time. For the case of pinacyanol iodide, these observations are complemented by its Raman spectrum, as well as the calculated Raman activity at the ground- and excited-state geometry.
Collapse
Affiliation(s)
- Lars Mewes
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Rebecca A Ingle
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Andre Al Haddad
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Wang P, He L, He Y, Sun S, Liu R, Wang B, Lan P, Lu P. Multilevel quantum interference in the formation of high-order fractional molecular alignment echoes. OPTICS EXPRESS 2021; 29:663-673. [PMID: 33726297 DOI: 10.1364/oe.411218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
We theoretically investigate the formation of the high-order fractional alignment echo in OCS molecule and systematically study the dependence of echo intensity on the intensities and time delay of the two excitation pulses. Our simulations reveal an intricate dependence of the intensity of high-order fractional alignment echo on the laser conditions. Based on the analysis with rotational density matrix, this intricate dependence is further demonstrated to arise from the interference of multiple quantum pathways that involve multilevel rotational transitions. Our result provides a comprehensive multilevel picture of the quantum dynamics of high-order fractional alignment echo in molecular ensembles, which will facilitate the development of "rotational echo spectroscopy."
Collapse
|
7
|
Lloyd LT, Wood RE, Allodi MA, Sohoni S, Higgins JS, Otto JP, Engel GS. Leveraging scatter in two-dimensional spectroscopy: passive phase drift correction enables a global phasing protocol. OPTICS EXPRESS 2020; 28:32869-32881. [PMID: 33114962 DOI: 10.1364/oe.404601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Phase stability between pulse pairs defining Fourier-transform time delays can limit resolution and complicates development and adoption of multidimensional coherent spectroscopies. We demonstrate a data processing procedure to correct the long-term phase drift of the nonlinear signal during two-dimensional (2D) experiments based on the relative phase between scattered excitation pulses and a global phasing procedure to generate fully absorptive 2D electronic spectra of wafer-scale monolayer MoS2. Our correction results in a ∼30-fold increase in effective long-term signal phase stability, from ∼λ/2 to ∼λ/70 with negligible extra experimental time and no additional optical components. This scatter-based drift correction should be applicable to other interferometric techniques as well, significantly lowering the practical experimental requirements for this class of measurements.
Collapse
|
8
|
Gozem S, Johnson PJM, Halpin A, Luk HL, Morizumi T, Prokhorenko VI, Ernst OP, Olivucci M, Miller RJD. Excited-State Vibronic Dynamics of Bacteriorhodopsin from Two-Dimensional Electronic Photon Echo Spectroscopy and Multiconfigurational Quantum Chemistry. J Phys Chem Lett 2020; 11:3889-3896. [PMID: 32330041 PMCID: PMC9198827 DOI: 10.1021/acs.jpclett.0c01063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to the ultrafast time scale of the photoinduced reaction and high degree of spectral overlap among the reactant, product, and excited electronic states in bacteriorhodopsin (bR), it has been a challenge for traditional spectroscopies to resolve the interplay between vibrational dynamics and electronic processes occurring in the retinal chromophore of bR. Here, we employ ultrafast two-dimensional electronic photon echo spectroscopy to follow the early excited-state dynamics of bR preceding the isomerization. We detect an early periodic photoinduced absorptive signal that, employing a hybrid multiconfigurational quantum/molecular mechanical model of bR, we attribute to periodic mixing of the first and second electronic excited states (S1 and S2, respectively). This recurrent interaction between S1 and S2, induced by a bond length alternation of the retinal chromohore, supports the hypothesis that the ultrafast photoisomerization in bR is initiated by a process involving coupled nuclear and electronic motion on three different electronic states.
Collapse
Affiliation(s)
- Samer Gozem
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Philip J M Johnson
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Alexei Halpin
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Hoi Ling Luk
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Valentyn I Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter, Atomically Resolved Dynamics Division, Building 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Department of Biotechnology, Chemistry and Pharmacology, Universitá di Siena, via De Gasperi 2, I-53100Siena, Italy
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
9
|
Wang B, He L, He Y, Zhang Y, Shao R, Lan P, Lu P. All-optical measurement of high-order fractional molecular echoes by high-order harmonic generation. OPTICS EXPRESS 2019; 27:30172-30181. [PMID: 31684267 DOI: 10.1364/oe.27.030172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
An all-optical measurement of high-order fractional molecular echoes is demonstrated by using high-order harmonic generation (HHG). Excited by a pair of time-delayed short laser pulses, the signatures of full and high order fractional (1/2 and 1/3) alignment echoes are observed in the HHG signals measured from CO 2 molecules at various time delays of the probe pulse. By increasing the time delay of the pump pulses, much higher order fractional (1/4) alignment echo is also observed in N 2O molecules. With an analytic model based on the impulsive approximation, the spatiotemporal dynamics of the echo process are retrieved from the experiment. Compared to the typical molecular alignment revivals, high-order fractional molecular echoes are demonstrated to dephase more rapidly, which will open a new route towards the ultrashort-time measurement. The proposed HHG method paves an efficient way for accessing the high-order fractional echoes in molecules.
Collapse
|
10
|
Duan HG, Prokhorenko VI, Cogdell RJ, Ashraf K, Stevens AL, Wientjes E, Croce R, Thorwart M, Miller RJD. Lack of long-lived quantum coherence in the photosynthetic energy transfer. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920509035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have studied the FMO, LHCII and PSII reaction center complex by electronic 2D spectroscopy. At ambient temperature the electronic coherences are too short lived to play any functional role in the natural energy transfer.
Collapse
|
11
|
Rosenberg D, Damari R, Fleischer S. Echo Spectroscopy in Multilevel Quantum-Mechanical Rotors. PHYSICAL REVIEW LETTERS 2018; 121:234101. [PMID: 30576185 DOI: 10.1103/physrevlett.121.234101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 06/09/2023]
Abstract
We study the dynamics of rotational echoes in gas phase molecular ensembles and their dependence on the delay and intensity of the excitation pulses. We explore the unique dynamics of alignment echoes that arise from the multilevel nature of the molecular rotors and impose severe difficulties in utilizing echo responses for rotational spectroscopy. We show experimentally and theoretically that judicious control of both the delay and intensity of the second pulse enables multilevel "rotational echo spectroscopy." The proposed methodology paves the way to rotational spectroscopy in high-density gas samples.
Collapse
Affiliation(s)
- Dina Rosenberg
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv University center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| | - Ran Damari
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv University center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| | - Sharly Fleischer
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv University center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Jha A, Duan HG, Tiwari V, Thorwart M, Miller RJD. Origin of poor doping efficiency in solution processed organic semiconductors. Chem Sci 2018; 9:4468-4476. [PMID: 29896388 PMCID: PMC5956981 DOI: 10.1039/c8sc00758f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/07/2018] [Indexed: 12/26/2022] Open
Abstract
Doping is an extremely important process where intentional insertion of impurities in semiconductors controls their electronic properties. In organic semiconductors, one of the convenient, but inefficient, ways of doping is the spin casting of a precursor mixture of components in solution, followed by solvent evaporation. Active control over this process holds the key to significant improvements over current poor doping efficiencies. Yet, an optimized control can only come from a detailed understanding of electronic interactions responsible for the low doping efficiencies. Here, we use two-dimensional nonlinear optical spectroscopy to examine these interactions in the course of the doping process by probing the solution mixture of doped organic semiconductors. A dopant accepts an electron from the semiconductor and the two ions form a duplex of interacting charges known as ion-pair complexes. Well-resolved off-diagonal peaks in the two-dimensional spectra clearly demonstrate the electronic connectivity among the ions in solution. This electronic interaction represents a well resolved electrostatically bound state, as opposed to a random distribution of ions. We developed a theoretical model to recover the experimental data, which reveals an unexpectedly strong electronic coupling of ∼250 cm-1 with an intermolecular distance of ∼4.5 Å between ions in solution, which is approximately the expected distance in processed films. The fact that this relationship persists from solution to the processed film gives direct evidence that Coulomb interactions are retained from the precursor solution to the processed films. This memory effect renders the charge carriers equally bound also in the film and, hence, results in poor doping efficiencies. This new insight will help pave the way towards rational tailoring of the electronic interactions to improve doping efficiencies in processed organic semiconductor thin films.
Collapse
Affiliation(s)
- Ajay Jha
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 , Hamburg , Germany .
| | - Hong-Guang Duan
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 , Hamburg , Germany .
- I. Institut für Theoretische Physik , Universität Hamburg , Jungiusstraße 9 , 20355 Hamburg , Germany
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Vandana Tiwari
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 , Hamburg , Germany .
- Department of Chemistry , University of Hamburg , Martin-Luther-King Platz 6 , 20146 Hamburg , Germany
| | - Michael Thorwart
- I. Institut für Theoretische Physik , Universität Hamburg , Jungiusstraße 9 , 20355 Hamburg , Germany
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 , Hamburg , Germany .
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149 , 22761 Hamburg , Germany
- The Departments of Chemistry and Physics , University of Toronto , 80 St. George Street , Toronto , Canada M5S 3H6
| |
Collapse
|
13
|
Weng YX. Detection of Electronic Coherence via Two-Dimensional Electronic Spectroscopy in Condensed Phase. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1803055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yu-xiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Rosenberg D, Damari R, Kallush S, Fleischer S. Rotational Echoes: Rephasing of Centrifugal Distortion in Laser-Induced Molecular Alignment. J Phys Chem Lett 2017; 8:5128-5135. [PMID: 28950060 DOI: 10.1021/acs.jpclett.7b02215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study and demonstrate the rephasing property of the echo response in a multilevel rotational system of iodomethane via long time-resolved optical birefringence measurements. The strong centrifugal distortion of iodomethane is utilized as a dephasing mechanism imprinted on the echo signal and is shown to rephase throughout its evolution. The dependence of the echo signal amplitude on the driving pulses' intensities is theoretically and experimentally explored. The analogy to Hahn's spin echoes is discussed, and a quantum-mechanical version of Hahn's track runners is provided for the case of multilevel rotational system.
Collapse
Affiliation(s)
- Dina Rosenberg
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv 6997801, Israel
- Tel-Aviv University Center for Light-Matter Interaction , Tel Aviv 6997801, Israel
| | - Ran Damari
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv 6997801, Israel
- Tel-Aviv University Center for Light-Matter Interaction , Tel Aviv 6997801, Israel
| | - Shimshon Kallush
- Department of Physics and Optical Engineering, ORT Braude College , P.O. Box 78, Karmiel 21982, Israel
- The Fritz Haber Research Center and The Institute of Chemistry, The Hebrew University , Jerusalem 91904, Israel
| | - Sharly Fleischer
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv 6997801, Israel
- Tel-Aviv University Center for Light-Matter Interaction , Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Primary Charge Separation in the Photosystem II Reaction Center Revealed by a Global Analysis of the Two-dimensional Electronic Spectra. Sci Rep 2017; 7:12347. [PMID: 28955056 PMCID: PMC5617839 DOI: 10.1038/s41598-017-12564-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/12/2017] [Indexed: 11/08/2022] Open
Abstract
The transfer of electronic charge in the reaction center of Photosystem II is one of the key building blocks of the conversion of sunlight energy into chemical energy within the cascade of the photosynthetic reactions. Since the charge transfer dynamics is mixed with the energy transfer dynamics, an effective tool for the direct resolution of charge separation in the reaction center is still missing. Here, we use experimental two-dimensional optical photon echo spectroscopy in combination with the theoretical calculation to resolve its signature. A global fitting analysis allows us to clearly and directly identify a decay pathway associated to the primary charge separation. In particular, it can be distinguished from regular energy transfer and occurs on a time scale of 1.5 ps under ambient conditions. This technique provides a general tool to identify charge separation signatures from the energy transport in two-dimensional optical spectroscopy.
Collapse
|
16
|
Son M, Mosquera-Vázquez S, Schlau-Cohen GS. Ultrabroadband 2D electronic spectroscopy with high-speed, shot-to-shot detection. OPTICS EXPRESS 2017; 25:18950-18962. [PMID: 29041086 DOI: 10.1364/oe.25.018950] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Two-dimensional electronic spectroscopy (2DES) is an incisive tool for disentangling excited state energies and dynamics in the condensed phase by directly mapping out the correlation between excitation and emission frequencies as a function of time. Despite its enhanced frequency resolution, the spectral window of detection is limited to the laser bandwidth, which has often hindered the visualization of full electronic energy relaxation pathways spread over the entire visible region. Here, we describe a high-sensitivity, ultrabroadband 2DES apparatus. We report a new combination of a simple and robust setup for increased spectral bandwidth and shot-to-shot detection. We utilize 8-fs supercontinuum pulses generated by gas filamentation spanning the entire visible region (450 - 800 nm), which allows for a simultaneous interrogation of electronic transitions over a 200-nm bandwidth, and an all-reflective interferometric delay system with angled nanopositioner stages achieves interferometric precision in coherence time control without introducing wavelength-dependent dispersion to the ultrabroadband spectrum. To address deterioration of detection sensitivity due to the inherent instability of ultrabroadband sources, we introduce a 5-kHz shot-to-shot, dual chopping acquisition scheme by combining a high-speed line-scan camera and two optical choppers to remove scatter contributions from the signal. Comparison of 2D spectra acquired by shot-to-shot detection and averaged detection shows a 15-fold improvement in the signal-to-noise ratio. This is the first direct quantification of detection sensitivity on a filamentation-based ultrabroadband 2DES apparatus.
Collapse
|
17
|
Johnson PJM, Farag MH, Halpin A, Morizumi T, Prokhorenko VI, Knoester J, Jansen TLC, Ernst OP, Miller RJD. The Primary Photochemistry of Vision Occurs at the Molecular Speed Limit. J Phys Chem B 2017; 121:4040-4047. [PMID: 28358485 DOI: 10.1021/acs.jpcb.7b02329] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrafast photochemical reactions are initiated by vibronic transitions from the reactant ground state to the excited potential energy surface, directly populating excited-state vibrational modes. The primary photochemical reaction of vision, the isomerization of retinal in the protein rhodopsin, is known to be a vibrationally coherent reaction, but the Franck-Condon factors responsible for initiating the process have been difficult to resolve with conventional time-resolved spectroscopies. Here we employ experimental and theoretical 2D photon echo spectroscopy to directly resolve for the first time the Franck-Condon factors that initiate isomerization on the excited potential energy surface and track the reaction dynamics. The spectral dynamics reveal vibrationally coherent isomerization occurring on the fastest possible time scale, that of a single period of the local torsional reaction coordinate. We successfully model this process as coherent wavepacket motion through a conical intersection on a ∼30 fs time scale, confirming the reaction coordinate as a local torsional coordinate with a frequency of ∼570 cm-1. As a result of spectral features being spread out along two frequency coordinates, we unambiguously assign reactant and product states following passage through the conical intersection, which reveal the key vibronic transitions that initiate the vibrationally coherent photochemistry of vision.
Collapse
Affiliation(s)
- Philip J M Johnson
- Departments of Chemistry & Physics, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Marwa H Farag
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Max Planck Institute for the Structure and Dynamics of Matter , Atomically Resolved Dynamics Division, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Alexei Halpin
- Departments of Chemistry & Physics, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto , 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Valentyn I Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter , Atomically Resolved Dynamics Division, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto , 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto , 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - R J Dwayne Miller
- Departments of Chemistry & Physics, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Max Planck Institute for the Structure and Dynamics of Matter , Atomically Resolved Dynamics Division, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
18
|
Mercer IP, Witting T, Driver T, Cogdell RJ, Marangos JP, Tisch JWG. Angle-resolved coherent wave mixing using a 4 fs ultra-broad bandwidth laser. OPTICS LETTERS 2017; 42:859-862. [PMID: 28198883 DOI: 10.1364/ol.42.000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate angle-resolved coherent (ARC) wave mixing using 4 fs light pulses derived from a laser source that spans 550-1000 nm. We believe this to be the shortest pulse duration used to date in coherent multi-dimensional spectroscopy. The marriage of this ultra-broad band, few-cycle coherent source with the ARC technique will permit new investigations of the interplay between energy transfers and quantum superposition states spanning 8200 cm-1. We applied this configuration to measurements on the photosynthetic low light (LL) complex from Rhodopseudomonas palustris in solution at ambient temperature. We observe bi-exponential population dynamics for energy transfer across 5500 cm-1 (0.65 eV), which we attribute to energy transfer from the Qx transition of bacteriochlorophylls to the B850 pigment of the complex. We believe for the first time, to the best of our knowledge, we demonstrate that ARC maps can be recorded using a single laser pulse.
Collapse
|
19
|
Johnson PJM, Koziol KL, Hamm P. Intrinsic phasing of heterodyne-detected multidimensional infrared spectra. OPTICS EXPRESS 2017; 25:2928-2938. [PMID: 29519009 DOI: 10.1364/oe.25.002928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We show that it is possible to phase multidimensional infrared spectra generated by a boxcars geometry four-wave mixing spectrometer directly from the signal generated by the molecular vibration of interest, without the need for auxiliary phasing measurements. For isolated vibrations, the phase profile of the 2D response smoothly varies between fixed phase limits, allowing for a general target for phasing independent of the degree of anharmonicity exhibited between the ground and excited state. As a proof of principle, the 2D response of the ∼2155 cm-1 thiocyanate stretch vibration of MeSCN, a system exhibiting anharmonicity such that the 0-1 and 1-2 transitions are spectrally isolated, is successfuly phased directly from the experimental spectra. The methodology is also applied to correctly phase extremely weak signals of the unnatural amino acid azidohomoalanine following background subtraction.
Collapse
|
20
|
Ma X, Dostál J, Brixner T. Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression. OPTICS EXPRESS 2016; 24:20781-91. [PMID: 27607681 DOI: 10.1364/oe.24.020781] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data.
Collapse
|
21
|
Gellen TA, Bizimana LA, Carbery WP, Breen I, Turner DB. Ultrabroadband two-quantum two-dimensional electronic spectroscopy. J Chem Phys 2016. [DOI: 10.1063/1.4960302] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias A. Gellen
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - Laurie A. Bizimana
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - William P. Carbery
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - Ilana Breen
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - Daniel B. Turner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| |
Collapse
|
22
|
Nenov A, Giussani A, Fingerhut BP, Rivalta I, Dumont E, Mukamel S, Garavelli M. Spectral lineshapes in nonlinear electronic spectroscopy. Phys Chem Chem Phys 2016; 17:30925-36. [PMID: 26084213 DOI: 10.1039/c5cp01167a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We outline a computational approach for nonlinear electronic spectra, which accounts for the electronic energy fluctuations due to nuclear degrees of freedom and explicitly incorporates the fluctuations of higher excited states, induced by the dynamics in the photoactive state(s). This approach is based on mixed quantum-classical dynamics simulations. Tedious averaging over multiple trajectories is avoided by employing the linearly displaced Brownian harmonic oscillator to model the correlation functions. The present strategy couples accurate computations of the high-lying excited state manifold with dynamics simulations. The application is made to the two-dimensional electronic spectra of pyrene, a polycyclic aromatic hydrocarbon characterized by an ultrafast (few tens of femtoseconds) decay from the bright S2 state to the dark S1 state. The spectra for waiting times t2 = 0 and t2 = 1 ps demonstrate the ability of this approach to model electronic state fluctuations and realistic lineshapes. Comparison with experimental spectra [Krebs et al., New Journal of Physics, 2013, 15, 085016] shows excellent agreement and allows us to unambiguously assign the excited state absorption features.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica G. Ciamician, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy.
| | - Angelo Giussani
- Dipartimento di Chimica G. Ciamician, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy.
| | - Benjamin P Fingerhut
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, Berlin, 12489, Germany
| | - Ivan Rivalta
- Laboratoire de Chimie, Ecole Normale Suprieure de Lyon, 46, allée d'Italie, 69364 Lyon, France
| | - Elise Dumont
- Laboratoire de Chimie, Ecole Normale Suprieure de Lyon, 46, allée d'Italie, 69364 Lyon, France
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - Marco Garavelli
- Dipartimento di Chimica G. Ciamician, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy. and Laboratoire de Chimie, Ecole Normale Suprieure de Lyon, 46, allée d'Italie, 69364 Lyon, France
| |
Collapse
|
23
|
Johnson PJM, Halpin A, Morizumi T, Prokhorenko VI, Ernst OP, Miller RJD. Local vibrational coherences drive the primary photochemistry of vision. Nat Chem 2015; 7:980-6. [DOI: 10.1038/nchem.2398] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/15/2015] [Indexed: 01/06/2023]
|
24
|
Bizimana LA, Brazard J, Carbery WP, Gellen T, Turner DB. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy. J Chem Phys 2015; 143:164203. [DOI: 10.1063/1.4934717] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Duan HG, Dijkstra AG, Nalbach P, Thorwart M. Efficient tool to calculate two-dimensional optical spectra for photoactive molecular complexes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042708. [PMID: 26565273 DOI: 10.1103/physreve.92.042708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 06/05/2023]
Abstract
We combine the coherent modified Redfield theory (CMRT) with the equation of motion-phase matching approach (PMA) to calculate two-dimensional photon-echo spectra for photoactive molecular complexes with an intermediate strength of the coupling to their environment. Both techniques are highly efficient, yet they involve approximations at different levels. By explicitly comparing with the numerically exact quasiadiabatic path integral approach, we show for the Fenna-Matthews-Olson complex that the CMRT describes the decay rates in the population dynamics well, but final stationary populations and the oscillation frequencies differ slightly. In addition, we use the combined CMRT+PMA to calculate two-dimensional photon-echo spectra for a simple dimer model. We find excellent agreement with the exact path integral calculations at short waiting times where the dynamics is still coherent. For long waiting times, differences occur due to different final stationary states, specifically for strong system-bath coupling. For weak to intermediate system-bath couplings, which is most important for natural photosynthetic complexes, the combined CMRT+PMA gives reasonable results with acceptable computational efforts.
Collapse
Affiliation(s)
- Hong-Guang Duan
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arend G Dijkstra
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Peter Nalbach
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
26
|
Yue S, Wang Z, He XC, Zhu GB, Weng YX. Construction of the Apparatus for Two Dimensional Electronic Spectroscopy and Characterization of the Instrument. CHINESE J CHEM PHYS 2015. [DOI: 10.1063/1674-0068/28/cjcp1506136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
27
|
Duan HG, Stevens AL, Nalbach P, Thorwart M, Prokhorenko VI, Miller RJD. Two-Dimensional Electronic Spectroscopy of Light-Harvesting Complex II at Ambient Temperature: A Joint Experimental and Theoretical Study. J Phys Chem B 2015; 119:12017-27. [PMID: 26301382 DOI: 10.1021/acs.jpcb.5b05592] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have performed broad-band two-dimensional (2D) electronic spectroscopy of light-harvesting complex II (LHCII) at ambient temperature. We found that electronic dephasing occurs within ∼60 fs and inhomogeneous broadening is approximately 120 cm(-1). A three-dimensional global fit analysis allows us to identify several time scales in the dynamics of the 2D spectra ranging from 100 fs to ∼10 ps and to uncover the energy-transfer pathways in LHCII. In particular, the energy transfer between the chlorophyll b and chlorophyll a pools occurs within ∼1.1 ps. Retrieved 2D decay-associated spectra also uncover the spectral positions of corresponding diagonal peaks in the 2D spectra. Residuals in the decay traces exhibit periodic modulations with different oscillation periods. However, only one of them can be associated with the excitonic cross-peaks in the 2D spectrum, while the remaining ones are presumably of vibrational origin. For the interpretation of the spectroscopic data, we have applied a refined exciton model for LHCII. It reproduces the linear absorption, circular dichroism, and 2D spectra at different waiting times. Several components of the energy transport are revealed from theoretical simulations that agree well with the experimental observations.
Collapse
Affiliation(s)
- Hong-Guang Duan
- I. Institut für Theoretische Physik, Universität Hamburg , Jungiusstraße 9, 20355 Hamburg, Germany.,Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Amy L Stevens
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Peter Nalbach
- I. Institut für Theoretische Physik, Universität Hamburg , Jungiusstraße 9, 20355 Hamburg, Germany.,The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg , Jungiusstraße 9, 20355 Hamburg, Germany.,The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Valentyn I Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
28
|
Rodriguez Y, Frei F, Cannizzo A, Feurer T. Pulse-shaping assisted multidimensional coherent electronic spectroscopy. J Chem Phys 2015; 142:212451. [DOI: 10.1063/1.4921793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yuseff Rodriguez
- Institute of Applied Physics, University of Bern, Sidlerstasse 5, CH-3012 Bern, Switzerland
| | - Franziska Frei
- Institute of Applied Physics, University of Bern, Sidlerstasse 5, CH-3012 Bern, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Sidlerstasse 5, CH-3012 Bern, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Sidlerstasse 5, CH-3012 Bern, Switzerland
| |
Collapse
|
29
|
Spokoyny B, Koh CJ, Harel E. Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy. OPTICS LETTERS 2015; 40:1014-1017. [PMID: 25768170 DOI: 10.1364/ol.40.001014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Broadband supercontinuum (SC) pulses in the few cycle regime are a promising source for spectroscopic and imaging applications. However, SC sources are plagued by poor stability, greatly limiting their utility in phase-resolved nonlinear experiments such as 2D photon echo spectroscopy (2D PES). Here, we generated SC by two-stage filamentation in argon and air starting from 100 fs input pulses, which are sufficiently high-power and stable to record time-resolved 2D PE spectra in a single laser shot. We obtain a total power of 400 μJ/pulse in the visible spectral range of 500-850 nm and, after compression, yield pulses with duration of 6 fs according to transient-grating frequency-resolved optical gating (TG-FROG) measurements. We demonstrate the method on the laser dye, Cresyl Violet, and observe coherent oscillations indicative of nuclear wavepacket dynamics.
Collapse
|
30
|
Fuller FD, Ogilvie JP. Experimental implementations of two-dimensional fourier transform electronic spectroscopy. Annu Rev Phys Chem 2015; 66:667-90. [PMID: 25664841 DOI: 10.1146/annurev-physchem-040513-103623] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two-dimensional electronic spectroscopy (2DES) reveals connections between an optical excitation at a given frequency and the signals it creates over a wide range of frequencies. These connections, manifested as cross-peak locations and their lineshapes, reflect the underlying electronic and vibrational structure of the system under study. How these spectroscopic signatures evolve in time reveals the system dynamics and provides a detailed picture of coherent and incoherent processes. 2DES is rapidly maturing and has already found numerous applications, including studies of photosynthetic energy transfer and photochemical reactions and many-body interactions in nanostructured materials. Many systems of interest contain electronic transitions spanning the ultraviolet to the near infrared and beyond. Most 2DES measurements to date have explored a relatively small frequency range. We discuss the challenges of implementing 2DES and compare and contrast different approaches in terms of their information content, ease of implementation, and potential for broadband measurements.
Collapse
Affiliation(s)
- Franklin D Fuller
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109;
| | | |
Collapse
|
31
|
Prokhorenko VI, Picchiotti A, Maneshi S, Dwayne Miller RJ. Broadband Electronic Two-Dimensional Spectroscopy in the Deep UV. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-13242-6_105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
32
|
Consani C, Ruetzel S, Nuernberger P, Brixner T. Quantum Control Spectroscopy of Competing Reaction Pathways in a Molecular Switch. J Phys Chem A 2014; 118:11364-72. [DOI: 10.1021/jp509382m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina Consani
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Ruetzel
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Brixner
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
33
|
Heisler IA, Moca R, Camargo FVA, Meech SR. Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:063103. [PMID: 24985795 DOI: 10.1063/1.4879822] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report an improved experimental scheme for two-dimensional electronic spectroscopy (2D-ES) based solely on conventional optical components and fast data acquisition. This is accomplished by working with two choppers synchronized to a 10 kHz repetition rate amplified laser system. We demonstrate how scattering and pump-probe contributions can be removed during 2D measurements and how the pump probe and local oscillator spectra can be generated and saved simultaneously with each population time measurement. As an example the 2D-ES spectra for cresyl violet were obtained. The resulting 2D spectra show a significant oscillating signal during population evolution time which can be assigned to an intramolecular vibrational mode.
Collapse
Affiliation(s)
- Ismael A Heisler
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Roberta Moca
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Franco V A Camargo
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
34
|
Coherent multidimensional optical spectra measured using incoherent light. Nat Commun 2014; 4:2298. [PMID: 23985989 DOI: 10.1038/ncomms3298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/11/2013] [Indexed: 11/09/2022] Open
Abstract
Four-wave mixing measurements can reveal spectral and dynamics information that is hidden in linear spectra by the interactions among light-absorbing molecules and with their environment. Coherent multidimensional optical spectroscopy is an important variant of four-wave mixing because it resolves a map of interactions and correlations between absorption bands. Previous coherent multidimensional optical spectroscopy measurements have used femtosecond pulses with great success, and it may seem that femtosecond pulses are necessary for such measurements. Here we present coherent two-dimensional electronic spectra measured using incoherent light. The spectra of model molecular systems using broadband spectrally incoherent light are similar but not identical to those expected from measurements using femtosecond pulses. Specifically, the spectra show particular sensitivity to long-lived intermediates such as photoisomers. The results will motivate the design of similar experiments in spectral ranges where femtosecond pulses are difficult to produce.
Collapse
|
35
|
Zheng H, Caram JR, Dahlberg PD, Rolczynski BS, Viswanathan S, Dolzhnikov DS, Khadivi A, Talapin DV, Engel GS. Dispersion-free continuum two-dimensional electronic spectrometer. APPLIED OPTICS 2014; 53:1909-17. [PMID: 24663470 PMCID: PMC4349747 DOI: 10.1364/ao.53.001909] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/06/2014] [Indexed: 05/06/2023]
Abstract
Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a.
Collapse
Affiliation(s)
- Haibin Zheng
- Department of Chemistry, The James Franck Institute, and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Justin R. Caram
- Department of Chemistry, The James Franck Institute, and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Peter D. Dahlberg
- Program in the Biophysical Sciences, The James Franck Institute, and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Brian S. Rolczynski
- Department of Chemistry, The James Franck Institute, and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Subha Viswanathan
- Department of Chemistry, The James Franck Institute, and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Dmitriy S. Dolzhnikov
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Amir Khadivi
- Department of Chemistry, The James Franck Institute, and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Dmitri V. Talapin
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory S. Engel
- Department of Chemistry, The James Franck Institute, and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
36
|
Fuller FD, Wilcox DE, Ogilvie JP. Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry. OPTICS EXPRESS 2014; 22:1018-27. [PMID: 24515061 DOI: 10.1364/oe.22.001018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We demonstrate a "drop-in" modification of the pulse-shaped pump-probe geometry two-dimensional Fourier transform spectrometer that significantly improves its performance by making the measurement background-free. The modification uses a hybrid diffractive optic/pulse-shaping approach that combines the advantages of background-free detection with the precise timing and phase-cycling capabilities enabled by pulse-shaping. In addition, we present a simple new method for accurate phasing of optically heterodyned two-dimensional spectra. We demonstrate the high quality of data obtainable with this approach by reporting two-dimensional Fourier transform electronic spectra of chlorophyll a in glycerol/water at 77 K.
Collapse
|
37
|
Halpin A, Johnson PJM, Tempelaar R, Murphy RS, Knoester J, Jansen TLC, Miller RJD. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat Chem 2014; 6:196-201. [DOI: 10.1038/nchem.1834] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/22/2013] [Indexed: 12/31/2022]
|
38
|
Wen P, Nelson KA. Selective Enhancements in 2D Fourier Transform Optical Spectroscopy with Tailored Pulse Shapes. J Phys Chem A 2013; 117:6380-7. [DOI: 10.1021/jp401150d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Patrick Wen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Keith A. Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| |
Collapse
|
39
|
Johnson PJM, Halpin A, Morizumi T, Prokhorenko VI, Ernst OP, Dwayne Miller RJ. Mixed Potential Energy Surfaces of the Ultrafast Isomerization of Retinal in Bacteriorhodopsin. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134107020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Halpin A, Johnson P, Murphy R, Prokhorenko V, Miller R. Two-Dimensional Electronic Spectroscopy of a Model Dimer System. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134105032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
Turner DB, Howey DJ, Sutor EJ, Hendrickson RA, Gealy MW, Ulness DJ. Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis. J Phys Chem A 2012; 117:5926-54. [PMID: 23176195 DOI: 10.1021/jp310477y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities.
Collapse
Affiliation(s)
- Daniel B Turner
- Department of Chemistry, Institute for Optical Sciences, and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Turner DB, Dinshaw R, Lee KK, Belsley MS, Wilk KE, Curmi PMG, Scholes GD. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys Chem Chem Phys 2012; 14:4857-74. [PMID: 22374579 DOI: 10.1039/c2cp23670b] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent measurements using two-dimensional electronic spectroscopy (2D ES) have shown that the initial dynamic response of photosynthetic proteins can involve quantum coherence. We show how electronic coherence can be differentiated from vibrational coherence in 2D ES. On that basis we conclude that both electronic and vibrational coherences are observed in the phycobiliprotein light-harvesting complex PC645 from Chroomonas sp. CCMP270 at ambient temperature. These light-harvesting antenna proteins of the cryptophyte algae are suspended in the lumen, where the pH drops significantly under sustained illumination by sunlight. Here we measured 2D ES of PC645 at increasing levels of acidity to determine if the change in pH affects the quantum coherence; quantitative analysis reveals that the dynamics are insensitive to the pH change.
Collapse
Affiliation(s)
- Daniel B Turner
- Department of Chemistry, Institute for Optical Sciences, and Centre for Quantum Information and Quantum Control, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Turner DB, Stone KW, Gundogdu K, Nelson KA. Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:081301. [PMID: 21895226 DOI: 10.1063/1.3624752] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have developed an efficient spectrometer capable of performing a wide variety of coherent multidimensional measurements at optical wavelengths. The two major components of the largely automated device are a spatial beam shaper which controls the beam geometry and a spatiotemporal pulse shaper which controls the temporal waveform of the femtosecond pulse in each beam. We describe how to construct, calibrate, and operate the device, and we discuss its limitations. We use the exciton states of a semiconductor nanostructure as a working example. A series of complex multidimensional spectra-displayed in amplitude and real parts-reveals increasingly intricate correlations among the excitons.
Collapse
Affiliation(s)
- Daniel B Turner
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
44
|
Augulis R, Zigmantas D. Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance. OPTICS EXPRESS 2011; 19:13126-13133. [PMID: 21747465 DOI: 10.1364/oe.19.013126] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In many potential applications of two-dimensional (2D) electronic spectroscopy the excitation energies per pulse are strictly limited, while the samples are strongly scattering. We demonstrate a technique, based on double-modulation of incident laser beams with mechanical choppers, which can be implemented in almost any non-collinear four wave mixing scheme including 2D spectroscopy setup. The technique virtually eliminates artifacts or "ghost" signals in 2D spectra, which arise due to scattering and accumulation of long-lived species. To illustrate the advantages of the technique, we show a comparison of porphyrin J-aggregate 2D spectra obtained with different methods following by discussion.
Collapse
Affiliation(s)
- Ramūnas Augulis
- Department of Chemical Physics, Lund University, Lund, Sweden
| | | |
Collapse
|
45
|
Voronine DV, Abramavicius D, Mukamel S. Coherent control protocol for separating energy-transfer pathways in photosynthetic complexes by chiral multidimensional signals. J Phys Chem A 2011; 115:4624-9. [PMID: 21495702 DOI: 10.1021/jp111555h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adaptive optimizations performed using a genetic algorithm are employed to construct optimal laser pulse configurations that separate spectroscopic features associated with the two main energy-transfer pathways in the third-order nonlinear optical response simulated for the Fenna-Matthews-Olson (FMO) photosynthetic complex from the green sulfur bacterium Chlorobium tepidum. Superpositions of chirality-induced tensor components in both collinear and noncollinear pulse configurations are analyzed. The optimal signals obtained by manipulating the ratios of various 2D spectral peaks reveal detailed information about the excitation dynamics.
Collapse
Affiliation(s)
- Dmitri V Voronine
- Department of Chemistry, University of California, Irvine, California, USA
| | | | | |
Collapse
|
46
|
Prokhorenko VI, Halpin A, Johnson PJM, Miller RJD, Brown LS. Coherent control of the isomerization of retinal in bacteriorhodopsin in the high intensity regime. J Chem Phys 2011; 134:085105. [DOI: 10.1063/1.3554743] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Prokhorenko VI, Halpin A, Miller RJD. Coherently-controlled two-dimensional spectroscopy: Evidence for phase induced long-lived memory effects. Faraday Discuss 2011; 153:27-39; discussion 73-91. [DOI: 10.1039/c1fd00095k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Selig U, Schleussner CF, Foerster M, Langhojer F, Nuernberger P, Brixner T. Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry. OPTICS LETTERS 2010; 35:4178-80. [PMID: 21165129 DOI: 10.1364/ol.35.004178] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We introduce fully noncollinear coherent two-dimensional (2D) spectroscopy in the UV domain with an all-reflective and miniaturized setup design. Phase stability is achieved via pairwise beam manipulation, and the concept can be transferred to all wavelength regimes. Here we present results from an implementation that has been optimized for wavelengths between 250 and 375 nm. Interferometric measurements prove phase stability over several hours. We obtained 2D spectra of the nonpolar UV chromophore p-terphenyl in ethanol, excited with 50 fs pulses at 287 nm.
Collapse
Affiliation(s)
- Ulrike Selig
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Christensson N, Avlasevich Y, Yartsev A, Müllen K, Pascher T, Pullerits T. Weakly chirped pulses in frequency resolved coherent spectroscopy. J Chem Phys 2010; 132:174508. [DOI: 10.1063/1.3404402] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
50
|
Nemeth A, Sperling J, Hauer J, Kauffmann HF, Milota F. Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy. OPTICS LETTERS 2009; 34:3301-3303. [PMID: 19881574 DOI: 10.1364/ol.34.003301] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report a compact, easy to align, and passively phase-stabilized setup for recording two-dimensional (2D) electronic spectra in three different phase-matching directions in the boxcar geometry. Passive phase stabilization is achieved by a diffractive optical element, the use of refractive optics for introducing pulse delays, and the use of common optics for all pulses. Representative 2D spectra correlating single- and double-quantum coherences in a molecular aggregate are presented.
Collapse
Affiliation(s)
- Alexandra Nemeth
- Department of Physical Chemistry, University of Vienna, Währingerstrasse 42, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|