1
|
Zhang J, Guan B, Wu X, Chen Y, Guo J, Ma Z, Bao S, Jiang X, Chen L, Shu K, Dang H, Guo Z, Li Z, Huang Z. Research on photocatalytic CO 2 conversion to renewable synthetic fuels based on localized surface plasmon resonance: current progress and future perspectives. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Due to its desirable optoelectronic properties, localized surface plasmon resonance (LSPR) can hopefully play a promising role in photocatalytic CO2 reduction reaction (CO2RR). In this review, mechanisms and applications of LSPR effect in this field are introduced in detail.
Collapse
Affiliation(s)
- Jinhe Zhang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Bin Guan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Xingze Wu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Yujun Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Jiangfeng Guo
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zeren Ma
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Shibo Bao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Xing Jiang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Lei Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Kaiyou Shu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Hongtao Dang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zelong Guo
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zekai Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zhen Huang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| |
Collapse
|
2
|
Nazemi M, Panikkanvalappil SR, Liao CK, Mahmoud MA, El-Sayed MA. Role of Femtosecond Pulsed Laser-Induced Atomic Redistribution in Bimetallic Au-Pd Nanorods on Optoelectronic and Catalytic Properties. ACS NANO 2021; 15:10241-10252. [PMID: 34032116 DOI: 10.1021/acsnano.1c02347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Utilizing solar energy for chemical transformations has attracted a growing interest in promoting the clean and modular chemical synthesis approach and addressing the limitations of conventional thermocatalytic systems. Under light irradiation, noble metal nanoparticles, particularly those characterized by localized surface plasmon resonance, commonly known as plasmonic nanoparticles, generate a strong electromagnetic field, excited hot carriers, and photothermal heating. Plasmonic nanoparticles enabling efficient absorption of light in the visible range have moderate catalytic activities. However, the catalytic performance of a plasmonic nanoparticle can be significantly enhanced by incorporating a highly catalytically active metal domain onto its surface. In this study, we demonstrate that femtosecond laser-induced atomic redistribution of metal domains in bimetallic Au-Pd nanorods (NRs) can enhance its photocurrent response by 2-fold compared to parent Au-Pd NRs. We induce structure changes on Au-Pd NRs by irradiating them with a femtosecond pulsed laser at 808 nm to precisely redistribute Pd atoms on AuNR surfaces, resulting in modified electronic and optical properties and, thereby, enhanced catalytic activity. We also investigate the trade-off between the effect of light absorption and catalytic activity by optimizing the structure and composition of bimetallic Au-Pd nanoparticles. This work provides insight into the design of hybrid plasmonic-catalytic nanostructures with well-tailored geometry, composition, and structure for solar-fuel-based applications.
Collapse
Affiliation(s)
- Mohammadreza Nazemi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Sajanlal R Panikkanvalappil
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02210, United States
| | - Chih-Kai Liao
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Mahmoud A Mahmoud
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Mostafa A El-Sayed
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
3
|
Brichkin SB, Spirin MG, Gadomskaya AV, Lizunova AA, Razumov VF. Plasmonic Antennas Based on Silica Shell-Coated Gold Nanorods for Near-IR Photodetectors. HIGH ENERGY CHEMISTRY 2021. [DOI: 10.1134/s0018143921020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Ćwik M, Sulowska K, Buczyńska D, Roźniecka E, Domagalska M, Maćkowski S, Niedziółka-Jönsson J. Controlling plasmon propagation and enhancement via reducing agent in wet chemistry synthesized silver nanowires. OPTICS EXPRESS 2021; 29:8834-8845. [PMID: 33820325 DOI: 10.1364/oe.412903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Silver nanowires with varying diameters and submillimeter lengths were obtained by changing a reducing agent used during hydrothermal synthesis. The control over the nanowire diameter turns out to play a critical role in determining their plasmonic properties, including fluorescence enhancement and surface plasmon polariton propagation. Advanced fluorescence imaging of hybrid nanostructures assembled of silver nanowires and photoactive proteins indicates longer propagation lengths for nanowires featuring larger diameters. At the same time, with increasing diameter of the nanowires, we measure a substantial reduction of fluorescence enhancement. The results point at possible ways to control the influence of plasmon excitations in silver nanowires by tuning their morphology.
Collapse
|
5
|
Sukharev M, Nitzan A. Optics of exciton-plasmon nanomaterials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:443003. [PMID: 28805193 DOI: 10.1088/1361-648x/aa85ef] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This review provides a brief introduction to the physics of coupled exciton-plasmon systems, the theoretical description and experimental manifestation of such phenomena, followed by an account of the state-of-the-art methodology for the numerical simulations of such phenomena and supplemented by a number of FORTRAN codes, by which the interested reader can introduce himself/herself to the practice of such simulations. Applications to CW light scattering as well as transient response and relaxation are described. Particular attention is given to so-called strong coupling limit, where the hybrid exciton-plasmon nature of the system response is strongly expressed. While traditional descriptions of such phenomena usually rely on analysis of the electromagnetic response of inhomogeneous dielectric environments that individually support plasmon and exciton excitations, here we explore also the consequences of a more detailed description of the molecular environment in terms of its quantum density matrix (applied in a mean field approximation level). Such a description makes it possible to account for characteristics that cannot be described by the dielectric response model: the effects of dephasing on the molecular response on one hand, and nonlinear response on the other. It also highlights the still missing important ingredients in the numerical approach, in particular its limitation to a classical description of the radiation field and its reliance on a mean field description of the many-body molecular system. We end our review with an outlook to the near future, where these limitations will be addressed and new novel applications of the numerical approach will be pursued.
Collapse
Affiliation(s)
- Maxim Sukharev
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, United States of America. Department of Physics, Arizona State University, Tempe, AZ 85287, United States of America
| | | |
Collapse
|
6
|
Akhavan S, Akgul MZ, Hernandez-Martinez PL, Demir HV. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device. ACS NANO 2017; 11:5430-5439. [PMID: 28528543 DOI: 10.1021/acsnano.6b08392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Förster resonance energy transfer (FRET) interacted with localized surface plasmon (LSP) gives us the ability to overcome inadequate transfer of energy between donor and acceptor nanocrystals (NCs). In this paper, we show LSP-enhanced FRET in colloidal photosensors of NCs in operation, resulting in substantially enhanced photosensitivity. The proposed photosensitive device is a layered self-assembled colloidal platform consisting of separated monolayers of the donor and the acceptor colloidal NCs with an intermediate metal nanoparticle (MNP) layer made of gold interspaced by polyelectrolyte layers. Using LBL assembly, we fabricated and comparatively studied seven types of such NC-monolayer devices (containing only donor, only acceptor, Au MNP-donor, Au MNP-acceptor, donor-acceptor bilayer, donor-Au MNP-acceptor trilayer, and acceptor-Au MNP-donor reverse trilayer). In these structures, we revealed the effect of LSP-enhanced FRET and exciton interactions from the donor NCs layer to the acceptor NCs layer. Compared to a single acceptor NC device, we observed a significant extension in operating wavelength range and a substantial photosensitivity enhancement (2.91-fold) around the LSP resonance peak of Au MNPs in the LSP-enhanced FRET trilayer structure. Moreover, we present a theoretical model for the intercoupled donor-Au MNP-acceptor structure subject to the plasmon-mediated nonradiative energy transfer. The obtained numerical results are in excellent agreement with the systematic experimental studies done in our work. The potential to modify the energy transfer through mastering the exciton-plasmon interactions and its implication in devices make them attractive for applications in nanophotonic devices and sensors.
Collapse
Affiliation(s)
- Shahab Akhavan
- UNAM-Institute of Materials Science and Nanotechnology, Department of Electrical and Electronics Engineering and Department of Physics, Bilkent University , Ankara 06800, Turkey
| | - Mehmet Zafer Akgul
- UNAM-Institute of Materials Science and Nanotechnology, Department of Electrical and Electronics Engineering and Department of Physics, Bilkent University , Ankara 06800, Turkey
| | - Pedro Ludwig Hernandez-Martinez
- UNAM-Institute of Materials Science and Nanotechnology, Department of Electrical and Electronics Engineering and Department of Physics, Bilkent University , Ankara 06800, Turkey
- LUMINOUS! Center of Excellence, School of Electrical and Electronic Engineering and School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 639798, Singapore
| | - Hilmi Volkan Demir
- UNAM-Institute of Materials Science and Nanotechnology, Department of Electrical and Electronics Engineering and Department of Physics, Bilkent University , Ankara 06800, Turkey
- LUMINOUS! Center of Excellence, School of Electrical and Electronic Engineering and School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 639798, Singapore
| |
Collapse
|
7
|
Sukharev M, Nitzan A. Plasmon transmission through excitonic subwavelength gaps. J Chem Phys 2016; 144:144703. [PMID: 27083741 DOI: 10.1063/1.4945446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We study the transfer of electromagnetic energy across a subwavelength gap separating two co-axial metal nanorods. In the absence of spacer in the gap separating the rods, the system exhibits strong coupling behavior between longitudinal plasmons in the two rods. The nature and magnitude of this coupling are studied by varying various geometrical parameters. As a function of frequency, the transmission is dominated by a split longitudinal plasmon peak. The two hybrid modes are the dipole-like "bonding" mode characterized by a peak intensity in the gap and a quadrupole-like "antibonding" mode whose amplitude vanishes at the gap center. When the length of one rod is varied, this mode spectrum exhibits the familiar anti-crossing behavior that depends on the coupling strength determined by the gap width. When off-resonant 2-level emitters are placed in the gap, almost no effect on the frequency dependent transmission is observed. In contrast, when the molecular system is resonant with the plasmonic line shape, the transmission is strongly modified, showing characteristics of strong exciton-plasmon coupling. Most strongly modified is the transmission near the lower frequency "bonding" plasmon mode. The presence of resonant molecules in the gap affects not only the molecule-field interaction but also the spatial distribution of the field intensity and the electromagnetic energy flux across the junction.
Collapse
Affiliation(s)
- Maxim Sukharev
- Science and Mathematics Faculty, College of Letters and Sciences, Arizona State University, Mesa, Arizona 85212, USA
| | - Abraham Nitzan
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
9
|
Chou KF, Dennis AM. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors. SENSORS 2015; 15:13288-325. [PMID: 26057041 PMCID: PMC4507609 DOI: 10.3390/s150613288] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 01/27/2023]
Abstract
Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.
Collapse
Affiliation(s)
- Kenny F Chou
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Allison M Dennis
- Department of Biomedical Engineering and Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Zhang YF, Yang DJ, Wang JH, Wang YL, Ding SJ, Zhou L, Hao ZH, Wang QQ. Multiple hybridized resonances of IR-806 chromonic molecules strongly coupled to Au nanorods. NANOSCALE 2015; 7:8503-8509. [PMID: 25896476 DOI: 10.1039/c5nr00051c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Strong coupling of plasmons and molecules generates intriguingly hybridized resonance. The IR-806 molecule is a near-infrared cyanine liquid crystal dye with multiple molecular bands and its tunable absorption spectrum varies dramatically with concentration. In this article, we investigate multiple hybridized resonances of the Au nanorods (AuNRs) strongly coupled to IR-806 molecules. Five hybridized resonance peaks are observed in the extinction spectra of the AuNR@IR-806 hybrids. Two resonance peaks at approximately 840 and 912 nm in the hybrids are reported for the first time. The dependence of the multiple hybridized peaks on the bare plasmon resonance wavelength of AuNRs and the molecular concentration is also demonstrated. The observations presented herein provide a plasmon-molecule coupling route for tuning optical responses of liquid crystal molecules.
Collapse
Affiliation(s)
- Ya-Fang Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kochuveedu ST, Kim DH. Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. NANOSCALE 2014; 6:4966-4984. [PMID: 24710702 DOI: 10.1039/c4nr00241e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The interaction between light and matter is the fundamental aspect of many optoelectronic applications. The efficiency of such devices is mainly dictated by the light emitting properties of fluorophores. Unfortunately, the intensity of emission is adversely affected by surface defects, scattering and chemical instability. Therefore, enhancing the luminescence of fluorophores is necessary for better implementation of nanocomposites in biological and optical applications. There are many interesting phenomena which can be observed if the characteristics of the fluorophores and metal nanoparticles are integrated. Photoluminescence (PL) by fluorophores can be enhanced or quenched by the presence of neighboring plasmonic metal nanostructures. An unambiguous study of the mechanism behind the enhancement and the quenching of emission is necessary to obtain new insight into the interactions between light and metal-fluorophore nanocomposites. In this review the core aspect of combining plasmonic metal nanostructures with fluorophores is discussed by considering various functional roles of plasmonic metals in modifying the PL properties reported by various research groups. A few representative applications of SPR mediated luminescence are also discussed.
Collapse
Affiliation(s)
- Saji Thomas Kochuveedu
- Department of Chemistry and Nano Science, Global Top 5 Research Program, Division of Molecular and Life Sciences, College of Natural Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea.
| | | |
Collapse
|
12
|
Brichkin SB. Nonradiative resonance energy transfer in systems containing quantum dots and its application. HIGH ENERGY CHEMISTRY 2013. [DOI: 10.1134/s0018143913060027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ozel T, Hernandez-Martinez PL, Mutlugun E, Akin O, Nizamoglu S, Ozel IO, Zhang Q, Xiong Q, Demir HV. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons. NANO LETTERS 2013; 13:3065-3072. [PMID: 23755992 DOI: 10.1021/nl4009106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report selectively plasmon-mediated nonradiative energy transfer between quantum dot (QD) emitters interacting with each other via Förster-type resonance energy transfer (FRET) under controlled plasmon coupling either to only the donor QDs (i.e., donor-selective) or to only the acceptor QDs (i.e., acceptor-selective). Using layer-by-layer assembled colloidal QD nanocrystal solids with metal nanoparticles integrated at carefully designed spacing, we demonstrate the ability to enable/disable the coupled plasmon-exciton (plexciton) formation distinctly at the donor (exciton departing) site or at the acceptor (exciton feeding) site of our choice, while not hindering the donor exciton-acceptor exciton interaction but refraining from simultaneous coupling to both sites of the donor and the acceptor in the FRET process. In the case of donor-selective plexciton, we observed a substantial shortening in the donor QD lifetime from 1.33 to 0.29 ns as a result of plasmon-coupling to the donors and the FRET-assisted exciton transfer from the donors to the acceptors, both of which shorten the donor lifetime. This consequently enhanced the acceptor emission by a factor of 1.93. On the other hand, in the complementary case of acceptor-selective plexciton we observed a 2.70-fold emission enhancement in the acceptor QDs, larger than the acceptor emission enhancement of the donor-selective plexciton, as a result of the combined effects of the acceptor plasmon coupling and the FRET-assisted exciton feeding. Here we present the comparative results of theoretical modeling of the donor- and acceptor-selective plexcitons of nonradiative energy transfer developed here for the first time, which are in excellent agreement with the systematic experimental characterization. Such an ability to modify and control energy transfer through mastering plexcitons is of fundamental importance, opening up new applications for quantum dot embedded plexciton devices along with the development of new techniques in FRET-based fluorescence microscopy.
Collapse
Affiliation(s)
- Tuncay Ozel
- Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University , LUMINOUS! Singapore 639798
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abramson J, Palma M, Wind SJ, Hone J. Quantum dot nanoarrays: self-assembly with single-particle control and resolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:2207-2211. [PMID: 22431200 DOI: 10.1002/adma.201104216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/12/2012] [Indexed: 05/31/2023]
Abstract
The develpoment of a highly selective immobilization strategy for the self-assembly of quantum dots (QDs) from solution on lithographically defined, biochemically functionalized metal nanopatterns is presented. Nanosale control is achieved for the formation of predominantly single-particle structures consisting of a QD coupled to a metal nanoparticle, and assembled into an ordered nanoarray.
Collapse
Affiliation(s)
- J Abramson
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
15
|
Sadeghi SM, West RG. Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:425302. [PMID: 21969173 DOI: 10.1088/0953-8984/23/42/425302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We study how Forster energy transfer from a semiconductor quantum dot to a metallic nanoparticle can be gated using quantum coherence in quantum dots. We show this allows us to use a laser field to open the flow of the energy transfer for a given period of time (on-state) before it is switched off to about zero. Utilizing such an energy gating process it is shown that quantum-dot-metallic-nanoparticle systems (meta-molecules) can act as functional nanoheaters capable of generating heat pulses with temporal widths determined by their environmental and physical parameters. We discuss the physics behind the energy nanogates using molecular states of such meta-molecules and the resonance fluorescence of the quantum dots.
Collapse
Affiliation(s)
- S M Sadeghi
- Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | | |
Collapse
|
16
|
Wang J, Shan Y, Zhao WW, Xu JJ, Chen HY. Gold Nanoparticle Enhanced Electrochemiluminescence of CdS Thin Films for Ultrasensitive Thrombin Detection. Anal Chem 2011; 83:4004-11. [DOI: 10.1021/ac200616g] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jing Wang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yun Shan
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei-Wei Zhao
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|