Okawa S, Ikehara T, Oda I, Yamada Y. Reconstruction of localized fluorescent target from multi-view continuous-wave surface images of small animal with lp sparsity regularization.
BIOMEDICAL OPTICS EXPRESS 2014;
5:1839-60. [PMID:
24940544 PMCID:
PMC4052914 DOI:
10.1364/boe.5.001839]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 05/10/2023]
Abstract
Fluorescence diffuse optical tomography using a multi-view continuous-wave and non-contact measurement system and an algorithm incorporating the lp (0 < p ≤ 1) sparsity regularization reconstructs a localized fluorescent target in a small animal. The measurement system provides a total of 25 fluorescence surface 2D-images of an object, which are acquired by a CCD camera from five different angles of view with excitation from five different angles. Fluorescence surface emissions from five different angles of view are simultaneously imaged on the CCD sensor, thus leading to fast acquisition of the 25 images within three minutes. The distributions of the fluorophore are reconstructed by solving the inverse problem based on the photon diffusion equations. In the reconstruction process incorporating the lp sparsity regularization, the regularization term is reformulated as a differentiable function for gradient-based non-linear optimization. Numerical simulations and phantom experiments show that the use of the lp sparsity regularization improves the localization of the target and quantitativeness of the fluorophore concentration. A mouse experiment demonstrates that a localized fluorescent target in a mouse is successfully reconstructed.
Collapse