Raddo TR, Panajotov K, Borges BHV, Virte M. Strain induced polarization chaos in a solitary VCSEL.
Sci Rep 2017;
7:14032. [PMID:
29070805 PMCID:
PMC5656599 DOI:
10.1038/s41598-017-14436-3]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/10/2017] [Indexed: 11/13/2022] Open
Abstract
Physical curiosity at the beginning, optical chaos is now attracting increasing interest in various technological areas such as detection and ranging or secure communications, to name but a few. However, the complexity of optical chaos generators still significantly hinders their development. In this context, the generation of chaotic polarization fluctuations in a single laser diode has proven to be a significant step forward, despite being observed solely for quantum-dot vertical-cavity surface-emitting lasers (VCSELs). Here, we demonstrate experimentally that a similar polarization dynamics can be consistently obtained in quantum-well VCSELs. Indeed, by introducing anisotropic strain in the laser cavity, we successfully triggered the desired chaotic dynamics. The simplicity of the proposed approach, based on low-cost and easily available components including off-the-shelf VCSELs, paves the way to the wide spread use of solitary VCSELs for chaos-based applications.
Collapse