1
|
Li B, Liu L, Xu L. Ultra-sensitive active whispering gallery mode sensor in an optofluidic microcapillary with Vernier effect of coupled modes. OPTICS EXPRESS 2025; 33:14668-14676. [PMID: 40219398 DOI: 10.1364/oe.554693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Ultrahigh sensitivity is achieved in an optofluidic microcapillary active sensor by utilizing the Vernier effect of coupled whispering gallery modes. A refractive index sensitivity of 2924 nm/RIU is obtained experimentally, which is 7 times higher than the sensitivity limit of a conventional whispering gallery mode sensor. By reducing the wall thickness of the microcapillary to decrease the difference of free spectral range of the coupled whispering gallery modes, further improvement in refractive index sensitivity can be as high as 48426 nm/RIU. This sensing strategy allows us to design a robust, easily fabricated ultra-sensitive optical sensor for microfluidic sensing applications.
Collapse
|
2
|
Zhang Z, Morrish W, Gardner K, Yang S, Yang Y, Meldrum A. Functional lasing microcapillaries for surface-specific sensing. OPTICS EXPRESS 2019; 27:26967-26978. [PMID: 31674566 DOI: 10.1364/oe.27.026967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Lasing-based sensors have several advantages over fluorescent devices, specifically related to the high light intensity and narrow mode linewidth that can improve the speed and accuracy of the sensor performance. In this work, a microcapillary-based lasing sensor is demonstrated, in which the lasing wavelengths are sensitive to the surface binding of specific materials. In order to achieve this, we utilized lasing into the "star" and "triangle" modes of a conventional microcapillary and tracked the mode positions after the deposition of a polyelectrolyte tri-layer and the subsequent amide binding of carboxy-functionalized polystyrene microspheres. While the lasing mode spectrum becomes increasingly complicated by the addition of the surface layers, careful mode selection can be used to monitor the layer-by-layer surface binding in a mechanically and optically robust device. For polystyrene microspheres, the detection limits were 9.75 nM based upon the lasing mode shift, which compares favorably with fluorescence-based devices. The methods presented in this work could readily be extended to other surface binding schemes and lasing wavelengths, showing that capillary microlasers could be used for many potential applications that capitalize on stable lasing-based detection methods.
Collapse
|
3
|
Wang J, Karnaushenko D, Medina-Sánchez M, Yin Y, Ma L, Schmidt OG. Three-Dimensional Microtubular Devices for Lab-on-a-Chip Sensing Applications. ACS Sens 2019; 4:1476-1496. [PMID: 31132252 DOI: 10.1021/acssensors.9b00681] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid advance of micro-/nanofabrication technologies opens up new opportunities for miniaturized sensing devices based on novel three-dimensional (3D) architectures. Notably, microtubular geometry exhibits natural advantages for sensing applications due to its unique properties including the hollow sensing channel, high surface-volume ratio, well-controlled shape parameters and compatibility to on-chip integration. Here the state-of-the-art sensing techniques based on microtubular devices are reviewed. The developed microtubular sensors cover microcapillaries, rolled-up nanomembranes, chemically synthesized tubular arrays, and photoresist-based tubular structures via 3D printing. Various types of microtubular sensors working in optical, electrical, and magnetic principles exhibit an extremely broad scope of sensing targets including liquids, biomolecules, micrometer-sized/nanosized objects, and gases. Moreover, they have also been applied for the detection of mechanical, acoustic, and magnetic fields as well as fluorescence signals in labeling-based analyses. At last, a comprehensive outlook of future research on microtubular sensors is discussed on pushing the detection limit, extending the functionality, and taking a step forward to a compact and integrable core module in a lab-on-a-chip analytical system for understanding fundamental biological events or performing accurate point-of-care diagnostics.
Collapse
Affiliation(s)
- Jiawei Wang
- Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09107 Chemnitz, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Technische Universität Chemnitz, Rosenbergstrasse 6, 09126 Chemnitz, Germany
| | | | | | - Yin Yin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Libo Ma
- Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden, Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09107 Chemnitz, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Technische Universität Chemnitz, Rosenbergstrasse 6, 09126 Chemnitz, Germany
| |
Collapse
|
4
|
Morrish W, West P, Orlando N, Klantsataya E, Gardner K, Lane S, Decorby R, François A, Meldrum A. Refractometric micro-sensor using a mirrored capillary resonator. OPTICS EXPRESS 2016; 24:24959-24970. [PMID: 27828436 DOI: 10.1364/oe.24.024959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report on a flow-through optical sensor consisting of a microcapillary with mirrored channels. Illuminating the structure from the side results in a complicated spectral interference pattern due to the different cavities formed between the inner and outer capillary walls. Using a Fourier transform technique to isolate the desired channel modes and measure their resonance shift, we obtain a refractometric detection limit of (6.3 ± 1.1) x 10-6 RIU near a center wavelength of 600 nm. This simple device demonstrates experimental refractometric sensitivities up to (5.6 ± 0.2) x 102 nm/RIU in the visible spectrum, and it is calculated to reach 1540 nm/RIU with a detection limit of 2.3 x 10-6 RIU at a wavelength of 1.55 µm. These values are comparable to or exceed some of the best Fabry-Perot sensors reported to date. Furthermore, the device can function as a gas or liquid sensor or even as a pressure sensor owing to its high refractometric sensitivity and simple operation.
Collapse
|
5
|
François A, Riesen N, Gardner K, Monro TM, Meldrum A. Lasing of whispering gallery modes in optofluidic microcapillaries. OPTICS EXPRESS 2016; 24:12466-12477. [PMID: 27410267 DOI: 10.1364/oe.24.012466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper demonstrates lasing of the whispering gallery modes in polymer coated optofluidic capillaries and their application to refractive index sensing. The laser gain medium used here is fluorescent Nile Red dye, which is embedded inside the high refractive index polymer coating. We investigate the refractometric sensing properties of these devices for different coating thicknesses, revealing that the high Q factors required to achieve low lasing thresholds can only be realized for relatively thick polymer coatings (in this case ≥ 800 nm). Lasing capillaries therefore tend to have a lower refractive index sensitivity, compared to non-lasing capillaries which can have a thinner polymer coating, due to the stronger WGM confinement within the polymer layer. However we find that the large improvement in signal-to-noise ratio realized for lasing capillaries more than compensates for the decreased sensitivity and results in an order-of-magnitude improvement in the detection limit for refractive index sensing.
Collapse
|
6
|
François A, Zhi Y, Meldrum A. Whispering Gallery Mode Devices for Sensing and Biosensing. PHOTONIC MATERIALS FOR SENSING, BIOSENSING AND DISPLAY DEVICES 2016. [DOI: 10.1007/978-3-319-24990-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Lane S, Marsiglio F, Zhi Y, Meldrum A. Refractometric sensitivity and thermal stabilization of fluorescent core microcapillary sensors: theory and experiment. APPLIED OPTICS 2015; 54:1331-1340. [PMID: 25968196 DOI: 10.1364/ao.54.001331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Fluorescent-core microcapillaries (FCMs) present a robust basis for the application of optical whispering gallery modes toward refractometric sensing. An important question concerns whether these devices can be rendered insensitive to local temperature fluctuations, which may otherwise limit their refractometric detection limits, mainly as a result of thermorefractive effects. Here, we first use a standard cylindrical cavity formalism to develop the refractometric and thermally limited detection limits for the FCM structure. We then measure the thermal response of a real device with different analytes in the channel and compare the result to the theory. Good stability against temperature fluctuations was obtained for an ethanol solvent, with a near-zero observed thermal shift for the transverse magnetic modes. Similarly good results could in principle be obtained for any other solvent (e.g., water), if the thickness of the fluorescent layer can be sufficiently well controlled.
Collapse
|
8
|
Lane S, West P, François A, Meldrum A. Protein biosensing with fluorescent microcapillaries. OPTICS EXPRESS 2015; 23:2577-90. [PMID: 25836122 DOI: 10.1364/oe.23.002577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Capillaries with a high-index fluorescent coating represent a new type of whispering-gallery-mode (WGM) microcavity sensor. By coating silicon quantum dots (Si-QDs) onto the channel wall of a microcapillary, a cylindrical microcavity forms in which the optical confinement arises from the index contrast at the interface between the QD layer and the glass capillary wall. However, the ability to functionalize the QD layer for biosensing applications is an open question, since the layer consists of a mixture of Si-QDs embedded in a glassy SiOx matrix. Here, we employ a polyelectrolyte (PE) multilayer approach to functionalize the microcapillary inner surface and demonstrate the potential of this refractive index sensing platform for label-free biosensing applications, using biotin-neutravidin as a specific interaction model.
Collapse
|
9
|
Afshar V S, Henderson MR, Greentree AD, Gibson BC, Monro TM. Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems. OPTICS EXPRESS 2014; 22:11301-11311. [PMID: 24921827 DOI: 10.1364/oe.22.011301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An ideal optical cavity operates by confining light in all three dimensions. We show that a cylindrical waveguide can provide the longitudinal confinement required to form a two dimensional cavity, described here as a self-formed cavity, by locating a dipole, directed along the waveguide, on the interface of the waveguide. The cavity resonance modes lead to peaks in the radiation of the dipole-waveguide system that have no contribution due to the skew rays that exist in longitudinally invariant waveguides and reduce their Q-factor. Using a theoretical model, we evaluate the Q-factor and modal volume of the cavity formed by a dipole-cylindrical-waveguide system and show that such a cavity allows access to both the strong and weak coupling regimes of cavity quantum electrodynamics.
Collapse
|
10
|
Recent advances in gas and chemical detection by Vernier effect-based photonic sensors. SENSORS 2014; 14:4831-55. [PMID: 24618728 PMCID: PMC4003970 DOI: 10.3390/s140304831] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/10/2014] [Accepted: 03/03/2014] [Indexed: 11/27/2022]
Abstract
Recently, the Vernier effect has been proved to be very efficient for significantly improving the sensitivity and the limit of detection (LOD) of chemical, biochemical and gas photonic sensors. In this paper a review of compact and efficient photonic sensors based on the Vernier effect is presented. The most relevant results of several theoretical and experimental works are reported, and the theoretical model of the typical Vernier effect-based sensor is discussed as well. In particular, sensitivity up to 460 μm/RIU has been experimentally reported, while ultra-high sensitivity of 2,500 μm/RIU and ultra-low LOD of 8.79 × 10−8 RIU have been theoretically demonstrated, employing a Mach-Zehnder Interferometer (MZI) as sensing device instead of an add drop ring resonator.
Collapse
|
11
|
Rivera-Pérez E, Díez A, Andrés MV, Cruz JL, Rodríguez-Cobos A. Tunable narrowband fiber laser with feedback based on whispering gallery mode resonances of a cylindrical microresonator. OPTICS LETTERS 2013; 38:1636-1638. [PMID: 23938894 DOI: 10.1364/ol.38.001636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Narrowband filtering based on whispering gallery modes of a slightly tapered cylindrical optical microresonator was used to implement a tunable narrowband erbium-doped fiber laser. The laser can be set to emit a single longitudinal cavity mode (single frequency), although the laser cavity is a few meters long. In the single-frequency regime the laser can emit a maximum power of 0.380 mW with a linewidth <35 kHz and a signal-to-noise ratio exceeding 50 dB. Tunability is achieved by sliding the excitation point along the microcylinder. A tuning range of 1.16 nm is demonstrated.
Collapse
Affiliation(s)
- E Rivera-Pérez
- Departamento de Física Aplicada-ICMUV, Universidad de Valencia, Burjassot, Spain
| | | | | | | | | |
Collapse
|
12
|
Rowland KJ, François A, Hoffmann P, Monro TM. Fluorescent polymer coated capillaries as optofluidic refractometric sensors. OPTICS EXPRESS 2013; 21:11492-11505. [PMID: 23670006 DOI: 10.1364/oe.21.011492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A capillary microresonator platform for refractometric sensing is demonstrated by coating the interior of thick-walled silica capillaries with a sub-wavelength layer of high refractive index, dye-doped polymer. No intermediate processing, such as etching or tapering, of the capillary is required. Side illumination and detection of the polymer layer reveals a fluorescence spectrum that is periodically modulated by whispering gallery mode resonances within the layer. Using a Fourier technique to calculate the spectral resonance shifts, the fabricated capillary resonators exhibited refractometric sensitivities up to approximately 30 nm/RIU upon flowing aqueous glucose through them. These sensors could be readily integrated with existing biological and chemical separation platforms such as capillary electrophoresis and gas chromatography where such thick walled capillaries are routinely used with polymer coatings. A review of the modelling required to calculate whispering gallery eigenmodes of such inverted cylindrical resonators is also presented.
Collapse
Affiliation(s)
- Kristopher J Rowland
- The Institute for Photonics and Advanced Sensing, The University of Adelaide Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
13
|
McFarlane S, Manchee CPK, Silverstone JW, Veinot J, Meldrum A. Synthesis and operation of fluorescent-core microcavities for refractometric sensing. J Vis Exp 2013:e50256. [PMID: 23524452 DOI: 10.3791/50256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This paper discusses fluorescent core microcavity-based sensors that can operate in a microfluidic analysis setup. These structures are based on the formation of a fluorescent quantum-dot (QD) coating on the channel surface of a conventional microcapillary. Silicon QDs are especially attractive for this application, owing in part to their negligible toxicity compared to the II-VI and II-VI compound QDs, which are legislatively controlled substances in many countries. While the ensemble emission spectrum is broad and featureless, an Si-QD film on the channel wall of a capillary features a set of sharp, narrow peaks in the fluorescence spectrum, corresponding to the electromagnetic resonances for light trapped within the film. The peak wavelength of these resonances is sensitive to the external medium, thus permitting the device to function as a refractometric sensor in which the QDs never come into physical contact with the analyte. The experimental methods associated with the fabrication of the fluorescent-core microcapillaries are discussed in detail, as well as the analysis methods. Finally, a comparison is made between these structures and the more widely investigated liquid-core optical ring resonators, in terms of microfluidic sensing capabilities.
Collapse
|
14
|
Silverstone JW, McFarlane S, Manchee CPK, Meldrum A. Ultimate resolution for refractometric sensing with whispering gallery mode microcavities. OPTICS EXPRESS 2012; 20:8284-8295. [PMID: 22513540 DOI: 10.1364/oe.20.008284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Many proposed microfluidic biosensor designs are based on the measurement of the resonances of an optical microcavity. Fluorescence-based resonators tend to be simpler and more robust than setups that use evanescent coupling from tuneable laser to probe the cavity. In all sensor designs the detection limits depend on the wavelength resolution of the detection system, which is a limitation of fluorescence-based devices. In this work, we explore the ultimate resolution and detection limits of refractometric microcavity sensor structures. Because many periodic modes are collected simultaneously from fluorescent resonators, standard Fourier methods can be best suited for rapid and precise analysis of the resonance shifts. Simple numerical expressions to calculate the ultimate sensor resolution and detection limits were found, and the results compared to experiments in which the resonances of fluorescent-core microcapillaries responded to various sucrose concentrations in water.
Collapse
Affiliation(s)
- J W Silverstone
- Department of Physics, University of Alberta, Edmonton, AB, T6G2G7, Canada
| | | | | | | |
Collapse
|
15
|
Helseth LE. Simultaneous measurements of absorption spectrum and refractive index in a microfluidic system. OPTICS EXPRESS 2012; 20:4653-4662. [PMID: 22418222 DOI: 10.1364/oe.20.004653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The characterization of dyes in various solvents requires determination of the absorption spectrum of the dye as well as the refractive index of the solvent. Typically, the refractive index of the solvent and the absorption spectrum of the solute are measured using separate experimental setups where significant liquid volumes are required. In this work the first optical measurement system that is able to do simultaneous measurements of the refractive index of the solvent and the spectral properties of the solute in a microscopic volume is presented. The laser dye Rhodamine 6G in glycerol is investigated, and the refractive index of the solution is monitored using the interference pattern of the light scattered off the channel, while its spectral properties is found by monitoring reflected light from the channel.
Collapse
Affiliation(s)
- Lars Egil Helseth
- Department of Physics and Technology, University of Bergen, Allegaten 55, 5007 Bergen, Norway.
| |
Collapse
|