1
|
Butt MA, Kazanskiy NL, Khonina SN, Voronkov GS, Grakhova EP, Kutluyarov RV. A Review on Photonic Sensing Technologies: Status and Outlook. BIOSENSORS 2023; 13:568. [PMID: 37232929 PMCID: PMC10216520 DOI: 10.3390/bios13050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
In contemporary science and technology, photonic sensors are essential. They may be made to be extremely resistant to some physical parameters while also being extremely sensitive to other physical variables. Most photonic sensors may be incorporated on chips and operate with CMOS technology, making them suitable for use as extremely sensitive, compact, and affordable sensors. Photonic sensors can detect electromagnetic (EM) wave changes and convert them into an electric signal due to the photoelectric effect. Depending on the requirements, scientists have found ways to develop photonic sensors based on several interesting platforms. In this work, we extensively review the most generally utilized photonic sensors for detecting vital environmental parameters and personal health care. These sensing systems include optical waveguides, optical fibers, plasmonics, metasurfaces, and photonic crystals. Various aspects of light are used to investigate the transmission or reflection spectra of photonic sensors. In general, resonant cavity or grating-based sensor configurations that work on wavelength interrogation methods are preferred, so these sensor types are mostly presented. We believe that this paper will provide insight into the novel types of available photonic sensors.
Collapse
Affiliation(s)
| | - Nikolay L. Kazanskiy
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Svetlana N. Khonina
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Grigory S. Voronkov
- Ufa University of Science and Technology, Z. Validi St. 32, 450076 Ufa, Russia
| | | | | |
Collapse
|
2
|
Meng Y, Chen Y, Lu L, Ding Y, Cusano A, Fan JA, Hu Q, Wang K, Xie Z, Liu Z, Yang Y, Liu Q, Gong M, Xiao Q, Sun S, Zhang M, Yuan X, Ni X. Optical meta-waveguides for integrated photonics and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:235. [PMID: 34811345 PMCID: PMC8608813 DOI: 10.1038/s41377-021-00655-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 05/13/2023]
Abstract
The growing maturity of nanofabrication has ushered massive sophisticated optical structures available on a photonic chip. The integration of subwavelength-structured metasurfaces and metamaterials on the canonical building block of optical waveguides is gradually reshaping the landscape of photonic integrated circuits, giving rise to numerous meta-waveguides with unprecedented strength in controlling guided electromagnetic waves. Here, we review recent advances in meta-structured waveguides that synergize various functional subwavelength photonic architectures with diverse waveguide platforms, such as dielectric or plasmonic waveguides and optical fibers. Foundational results and representative applications are comprehensively summarized. Brief physical models with explicit design tutorials, either physical intuition-based design methods or computer algorithms-based inverse designs, are cataloged as well. We highlight how meta-optics can infuse new degrees of freedom to waveguide-based devices and systems, by enhancing light-matter interaction strength to drastically boost device performance, or offering a versatile designer media for manipulating light in nanoscale to enable novel functionalities. We further discuss current challenges and outline emerging opportunities of this vibrant field for various applications in photonic integrated circuits, biomedical sensing, artificial intelligence and beyond.
Collapse
Affiliation(s)
- Yuan Meng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Yizhen Chen
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing and School of Information, Science and Technology, Fudan University, Shanghai, 200433, China
| | - Longhui Lu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yimin Ding
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrea Cusano
- Optoelectronic Division, Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Jonathan A Fan
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Qiaomu Hu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kaiyuan Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenwei Xie
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen, 518060, China
| | - Zhoutian Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Yuanmu Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Qiang Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China.
| | - Shulin Sun
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing and School of Information, Science and Technology, Fudan University, Shanghai, 200433, China.
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, China.
| | - Minming Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Xiaocong Yuan
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen, 518060, China
| | - Xingjie Ni
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
3
|
Khonina SN, Kazanskiy NL, Khorin PA, Butt MA. Modern Types of Axicons: New Functions and Applications. SENSORS 2021; 21:s21196690. [PMID: 34641014 PMCID: PMC8512447 DOI: 10.3390/s21196690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/23/2023]
Abstract
Axicon is a versatile optical element for forming a zero-order Bessel beam, including high-power laser radiation schemes. Nevertheless, it has drawbacks such as the produced beam's parameters being dependent on a particular element, the output beam's intensity distribution being dependent on the quality of element manufacturing, and uneven axial intensity distribution. To address these issues, extensive research has been undertaken to develop nondiffracting beams using a variety of advanced techniques. We looked at four different and special approaches for creating nondiffracting beams in this article. Diffractive axicons, meta-axicons-flat optics, spatial light modulators, and photonic integrated circuit-based axicons are among these approaches. Lately, there has been noteworthy curiosity in reducing the thickness and weight of axicons by exploiting diffraction. Meta-axicons, which are ultrathin flat optical elements made up of metasurfaces built up of arrays of subwavelength optical antennas, are one way to address such needs. In addition, when compared to their traditional refractive and diffractive equivalents, meta-axicons have a number of distinguishing advantages, including aberration correction, active tunability, and semi-transparency. This paper is not intended to be a critique of any method. We have outlined the most recent advancements in this field and let readers determine which approach best meets their needs based on the ease of fabrication and utilization. Moreover, one section is devoted to applications of axicons utilized as sensors of optical properties of devices and elements as well as singular beams states and wavefront features.
Collapse
Affiliation(s)
- Svetlana N. Khonina
- Image Processing Systems Institute of RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia; (S.N.K.); (N.L.K.)
- Samara National Research University, 443086 Samara, Russia;
| | - Nikolay L. Kazanskiy
- Image Processing Systems Institute of RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia; (S.N.K.); (N.L.K.)
- Samara National Research University, 443086 Samara, Russia;
| | | | - Muhammad A. Butt
- Samara National Research University, 443086 Samara, Russia;
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
- Correspondence:
| |
Collapse
|
4
|
Fan Y, Cluzel B, Petit M, Le Roux X, Lupu A, de Lustrac A. 2D Waveguided Bessel Beam Generated Using Integrated Metasurface-Based Plasmonic Axicon. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21114-21119. [PMID: 32310629 DOI: 10.1021/acsami.0c03420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Near-field imaging of the propagation of a diffraction-free Bessel-type beam in a guided wave configuration generated by means of a metasurface-based axicon lens integrated on a silicon waveguide is reported. The operation of the axicon lens with a footprint as small as 11 μm2 is based on local engineering of the effective index of the silicon waveguide with plasmonic nanoresonators. This generic approach, which can be adapted to different types of planar lightwave circuit platforms, offers the possibility to design nano-engineered optical devices based on the use of plasmonic resonators to control light at the nanoscale.
Collapse
Affiliation(s)
- Yulong Fan
- Centre de Nanosciences et de Nanotechnologies, CNRS, University Paris-Sud, Université Paris-Saclay, C2N, 10 Boulevard Thomas Gobert, 91120 Palaiseau Cedex, France
| | - Benoît Cluzel
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Marlène Petit
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Xavier Le Roux
- Centre de Nanosciences et de Nanotechnologies, CNRS, University Paris-Sud, Université Paris-Saclay, C2N, 10 Boulevard Thomas Gobert, 91120 Palaiseau Cedex, France
| | - Anatole Lupu
- Centre de Nanosciences et de Nanotechnologies, CNRS, University Paris-Sud, Université Paris-Saclay, C2N, 10 Boulevard Thomas Gobert, 91120 Palaiseau Cedex, France
| | - Andre de Lustrac
- Centre de Nanosciences et de Nanotechnologies, CNRS, University Paris-Sud, Université Paris-Saclay, C2N, 10 Boulevard Thomas Gobert, 91120 Palaiseau Cedex, France
| |
Collapse
|
5
|
Sun YZ, Feng LS, Bachelot R, Blaize S, Ding W. Full control of far-field radiation via photonic integrated circuits decorated with plasmonic nanoantennas. OPTICS EXPRESS 2017; 25:17417-17430. [PMID: 28789234 DOI: 10.1364/oe.25.017417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
We theoretically develop a hybrid architecture consisting of photonic integrated circuit and plasmonic nanoantennas to fully control optical far-field radiation with unprecedented flexibility. By exploiting asymmetric and lateral excitation from silicon waveguides, single gold nanorod and cascaded nanorod pair can function as component radiation pixels, featured by full 2π phase coverage and nanoscale footprint. These radiation pixels allow us to design scalable on-chip devices in a wavefront engineering fashion. We numerically demonstrate beam collimation with 30° out of the incident plane and nearly diffraction limited divergence angle. We also present high-numerical-aperture (NA) beam focusing with NA ≈0.65 and vector beam generation (the radially-polarized mode) with the mode similarity greater than 44%. This concept and approach constitutes a designable optical platform, which might be a future bridge between integrated photonics and metasurface functionalities.
Collapse
|
6
|
Fan Y, Le Roux X, Korovin A, Lupu A, de Lustrac A. Integrated 2D-Graded Index Plasmonic Lens on a Silicon Waveguide for Operation in the Near Infrared Domain. ACS NANO 2017; 11:4599-4605. [PMID: 28463497 DOI: 10.1021/acsnano.7b00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this article we address the nanoscale engineering of the effective index of silicon on insulator waveguides by using plasmonic metasurface resonances to realize a graded index lens. We report the design, implementation, and experimental demonstration of this plasmonic metasurface-based graded index lens integrated on a silicon waveguide for operation in the near-infrared domain. The 2D-graded index lens consists of an array of gold cut wires fabricated on the top of a silicon waveguide. These gold cut wires modify locally the effective index of the silicon waveguide and allow the realization of this gradient lens. The reported solution represents a promising alternative to the bulky or multilayered metamaterials approach in the near IR domain. This enabling technology may have found its place in silicon photonic applications by exploiting the plasmonic resonances to control the light at nanoscale.
Collapse
Affiliation(s)
- Yulong Fan
- Univ. Paris-Sud, Université Paris-Saclay , C2N, 91405 Orsay, Cedex, France
| | - Xavier Le Roux
- Univ. Paris-Sud, Université Paris-Saclay , C2N, 91405 Orsay, Cedex, France
| | - Alexander Korovin
- Univ. Paris-Sud, Université Paris-Saclay , C2N, 91405 Orsay, Cedex, France
| | - Anatole Lupu
- Univ. Paris-Sud, Université Paris-Saclay , C2N, 91405 Orsay, Cedex, France
| | - Andre de Lustrac
- Univ. Paris-Sud, Université Paris-Saclay , C2N, 91405 Orsay, Cedex, France
- Université Paris Nanterre , 92410 Ville d'Avray, France
| |
Collapse
|
7
|
Staude I, Decker M, Ventura MJ, Jagadish C, Neshev DN, Gu M, Kivshar YS. Hybrid high-resolution three-dimensional nanofabrication for metamaterials and nanoplasmonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1260-1264. [PMID: 23180740 DOI: 10.1002/adma.201203564] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/24/2012] [Indexed: 05/26/2023]
Affiliation(s)
- Isabelle Staude
- Nonlinear Physics Centre and Centre for Ultra-high bandwidth Devices for Optical Systems, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | | | | | |
Collapse
|