1
|
Cheng G, Kuan CY, Lou KW, Ho YP. Light-Responsive Materials in Droplet Manipulation for Biochemical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313935. [PMID: 38379512 DOI: 10.1002/adma.202313935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Miniaturized droplets, characterized by well-controlled microenvironments and capability for parallel processing, have significantly advanced the studies on enzymatic evolution, molecular diagnostics, and single-cell analysis. However, manipulation of small-sized droplets, including moving, merging, and trapping of the targeted droplets for complex biochemical assays and subsequent analysis, is not trivial and remains technically demanding. Among various techniques, light-driven methods stand out as a promising candidate for droplet manipulation in a facile and flexible manner, given the features of contactless interaction, high spatiotemporal resolution, and biocompatibility. This review therefore compiles an in-depth discussion of the governing mechanisms underpinning light-driven droplet manipulation. Besides, light-responsive materials, representing the core of light-matter interaction and the key character converting light into different forms of energy, are particularly assessed in this review. Recent advancements in light-responsive materials and the most notable applications are comprehensively archived and evaluated. Continuous innovations and rational engineering of light-responsive materials are expected to propel the development of light-driven droplet manipulation, equip droplets with enhanced functionality, and broaden the applications of droplets for biochemical studies and routine biochemical investigations.
Collapse
Affiliation(s)
- Guangyao Cheng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chit Yau Kuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kuan Wen Lou
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, 999077, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
Cai S, Ma Z, Ge Z, Yang W. Recent advances in optically induced di-electrophoresis and its biomedical applications. Biomed Microdevices 2022; 24:22. [PMID: 35689721 DOI: 10.1007/s10544-022-00620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The development of the micro/nano science and technology has promoted the evolvement of human civilization tremendously. The advancement of the micro/nano science and technology highly depends on the progress of the micro/nano manipulation techniques, and the micro/nano-scaled manipulation level is the critical sign of the micro/nano science and technology. This review, aimed at the demand and the challenge of the micro/nano material and biomedical fields and related to the scientific issues and implementation techniques of the optically induced di-electrophoresis (ODEP). We explained its working principle, manipulating method, and influencing factors of ODEP force to a certain extent. A number of application fields based-ODEP technology and specific applications so far are summarized and reviewed. Finally, some perspectives are provided on current development trends, future research directions, and challenges of ODEP.
Collapse
Affiliation(s)
- Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Zheng Ma
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|
3
|
Du M, Liu F, Luan X, Li G. Isolation method of Saccharomyces cerevisiae from red blood cells based on the optically induced dielectrophoresis technique for the rapid detection of fungal infections. BIOMEDICAL OPTICS EXPRESS 2022; 13:559-570. [PMID: 35284153 PMCID: PMC8884199 DOI: 10.1364/boe.448729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Saccharomyces cerevisiae (S. cerevisiae) has been classically used to treat diarrhea and diarrhea-related diseases. However, in the past two decades, fungal infections caused by S. cerevisiae have been increasing among immunocompromised patients, and it takes too long to isolate S. cerevisiae from blood to diagnose it in time. In this paper, a new method for the isolation and selection of S. cerevisiae from red blood cells (RBC) is proposed by designing a microfluidic chip with an optically-induced dielectrophoresis (ODEP) system. It was verified by theory and experiments that the magnitude and direction of the dielectrophoresis force applied on RBCs and S. cerevisiae are different, which determine that the S. cerevisiae can be isolated from RBCs by the ODEP system. By designing the specific light images and the dynamic separation mode, the optimal operating conditions were experimentally achieved for acquiring higher purity of S. cerevisiae. The purity ranges were up to 95.9%-97.3%. This work demonstrates a promising tool for efficient and effective purification of S. cerevisiae from RBCs and provides a novel method of S. cerevisiae isolation for the timely diagnosis of fungal infections.
Collapse
Affiliation(s)
- Mingao Du
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China
| | - Xiaoli Luan
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China
| | - Gongxin Li
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
4
|
Zhang S, Xu B, Elsayed M, Nan F, Liang W, Valley JK, Liu L, Huang Q, Wu MC, Wheeler AR. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation. Chem Soc Rev 2022; 51:9203-9242. [DOI: 10.1039/d2cs00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the fundamentals, recent progress and state-of-the-art applications of optoelectronic tweezers technology, and demonstrates that optoelectronic tweezers technology is a versatile and powerful toolbox for nano-/micro-manipulation.
Collapse
Affiliation(s)
- Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Bingrui Xu
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Mohamed Elsayed
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Justin K. Valley
- Berkeley Lights, Inc, 5858 Horton Street #320, Emeryville, CA 94608, USA
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Ming C. Wu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Aaron R. Wheeler
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
5
|
Du M, Li G, Wang Z, Ge Y, Liu F. Rapid isolation method of Saccharomyces cerevisiae based on optically induced dielectrophoresis technique for fungal infection diagnosis. APPLIED OPTICS 2021; 60:2150-2157. [PMID: 33690309 DOI: 10.1364/ao.415684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Saccharomyces cerevisiae(S. cerevisiae) has been classically used as a treatment for diarrhea and diarrhea-related diseases. However, cases of the fungal infections caused by S. cerevisiae have been increasing in the last two decades among immunocompromised patients, while a long time was spent on S. cerevisiae isolation clinically so it was difficult to achieve timely diagnosis the diseases. Here, a novel approach for isolation and selection of S. cerevisiae is proposed by designing a microfluidic chip with an optically induced dielectrophoresis (ODEP) system. S. cerevisiae was isolated from the surroundings by ODEP due to different dielectrophoretic forces. Two special light images were designed and used to block and separate S. cerevisiae, respectively, and several manipulation parameters of ODEP were experimentally optimized to acquire the maximum isolation efficiency of S. cerevisiae. The results on the S. cerevisiae isolation declared that the purity of the S. cerevisiae selected by the method was up to 99.5%±0.05, and the capture efficiency was up to 65.0%±2.5 within 10 min. This work provides a general method to isolate S. cerevisiae as well as other microbial cells with high accuracy and efficiency and paves a road for biological research in which the isolation of high-purity cells is required.
Collapse
|
6
|
Liang W, Liu L, Wang J, Yang X, Wang Y, Li WJ, Yang W. A Review on Optoelectrokinetics-Based Manipulation and Fabrication of Micro/Nanomaterials. MICROMACHINES 2020; 11:mi11010078. [PMID: 31936694 PMCID: PMC7019850 DOI: 10.3390/mi11010078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Optoelectrokinetics (OEK), a fusion of optics, electrokinetics, and microfluidics, has been demonstrated to offer a series of extraordinary advantages in the manipulation and fabrication of micro/nanomaterials, such as requiring no mask, programmability, flexibility, and rapidness. In this paper, we summarize a variety of differently structured OEK chips, followed by a discussion on how they are fabricated and the ways in which they work. We also review how three differently sized polystyrene beads can be separated simultaneously, how a variety of nanoparticles can be assembled, and how micro/nanomaterials can be fabricated into functional devices. Another focus of our paper is on mask-free fabrication and assembly of hydrogel-based micro/nanostructures and its possible applications in biological fields. We provide a summary of the current challenges facing the OEK technique and its future prospects at the end of this paper.
Collapse
Affiliation(s)
- Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (W.L.); (J.W.); (X.Y.)
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- CAS-CityU Joint Laboratory on Robotics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
- Correspondence: (L.L.); (W.J.L.); Tel.: +86-24-2397-0181 (L.L.); +852-3442-9266 (W.J.L.)
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (W.L.); (J.W.); (X.Y.)
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (W.L.); (J.W.); (X.Y.)
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- CAS-CityU Joint Laboratory on Robotics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Wen Jung Li
- CAS-CityU Joint Laboratory on Robotics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
- Correspondence: (L.L.); (W.J.L.); Tel.: +86-24-2397-0181 (L.L.); +852-3442-9266 (W.J.L.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| |
Collapse
|
7
|
Liang W, Liu L, Zhang H, Wang Y, Li WJ. Optoelectrokinetics-based microfluidic platform for bioapplications: A review of recent advances. BIOMICROFLUIDICS 2019; 13:051502. [PMID: 31558919 PMCID: PMC6748859 DOI: 10.1063/1.5116737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/05/2019] [Indexed: 05/14/2023]
Abstract
The introduction of optoelectrokinetics (OEK) into lab-on-a-chip systems has facilitated a new cutting-edge technique-the OEK-based micro/nanoscale manipulation, separation, and assembly processes-for the microfluidics community. This technique offers a variety of extraordinary advantages such as programmability, flexibility, high biocompatibility, low-cost mass production, ultralow optical power requirement, reconfigurability, rapidness, and ease of integration with other microfluidic units. This paper reviews the physical mechanisms that govern the manipulation of micro/nano-objects in microfluidic environments as well as applications related to OEK-based micro/nanoscale manipulation-applications that span from single-cell manipulation to single-molecular behavior determination. This paper wraps up with a discussion of the current challenges and future prospects for the OEK-based microfluidics technique. The conclusion is that this technique will allow more opportunities for biomedical and bioengineering researchers to improve lab-on-a-chip technologies and will have far-reaching implications for biorelated researches and applications in the future.
Collapse
Affiliation(s)
- Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Lianqing Liu
- Authors to whom correspondence should be addressed: and
| | - Hemin Zhang
- Department of Neurology, The People’s Hospital of Liaoning Province, Shenyang 110016, China
| | | | - Wen Jung Li
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
8
|
|
9
|
Manipulating and assembling metallic beads with Optoelectronic Tweezers. Sci Rep 2016; 6:32840. [PMID: 27599445 PMCID: PMC5013433 DOI: 10.1038/srep32840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/15/2016] [Indexed: 11/23/2022] Open
Abstract
Optoelectronic tweezers (OET) or light-patterned dielectrophoresis (DEP) has been developed as a micromanipulation technology for controlling micro- and nano-particles with applications such as cell sorting and studying cell communications. Additionally, the capability of moving small objects accurately and assembling them into arbitrary 2D patterns also makes OET an attractive technology for microfabrication applications. In this work, we demonstrated the use of OET to manipulate conductive silver-coated Poly(methyl methacrylate) (PMMA) microspheres (50 μm diameter) into tailored patterns. It was found that the microspheres could be moved at a max velocity of 3200 μm/s, corresponding to 4.2 nano-newton (10−9 N) DEP force, and also could be positioned with high accuracy via this DEP force. The underlying mechanism for this strong DEP force is shown by our simulations to be caused by a significant increase of the electric field close to the particles, due to the interaction between the field and the silver shells coating the microspheres. The associated increase in electrical gradient causes DEP forces that are much stronger than any previously reported for an OET device, which facilitates manipulation of the metallic microspheres efficiently without compromise in positioning accuracy and is important for applications on electronic component assembling and circuit construction.
Collapse
|
10
|
Yang PF, Wang CH, Lee GB. Optically-Induced Cell Fusion on Cell Pairing Microstructures. Sci Rep 2016; 6:22036. [PMID: 26912054 PMCID: PMC4766562 DOI: 10.1038/srep22036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/04/2016] [Indexed: 02/07/2023] Open
Abstract
Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20 Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells.
Collapse
Affiliation(s)
- Po-Fu Yang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013.,Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan 30013
| |
Collapse
|
11
|
Gwon HR, Chang ST, Choi CK, Jung JY, Kim JM, Lee SH. Development of a new contactless dielectrophoresis system for active particle manipulation using movable liquid electrodes. Electrophoresis 2014; 35:2014-21. [PMID: 24737601 DOI: 10.1002/elps.201300566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/07/2022]
Abstract
This study presents a new DEP manipulation technique using a movable liquid electrode, which allows manipulation of particles by actively controlling the locations of electrodes and applying on-off electric input signals. This DEP system consists of mercury as a movable liquid electrode, indium tin oxide (ITO)-coated glass, SU-8-based microchannels for electrode passages, and a PDMS medium chamber. A simple squeezing method was introduced to build a thin PDMS layer at the bottom of the medium chamber to create a contactless DEP system. To determine the operating conditions, the DEP force and the friction force were analytically compared for a single cell. In addition, an appropriate frequency range for effective DEP manipulation was chosen based on an estimation of the Clausius-Mossotti factor and the effective complex permittivity of the yeast cell using the concentric shell model. With this system, we demonstrated the active manipulation of yeast cells, and measured the collection efficiency and the dielectrophoretic velocity of cells for different AC electric field strengths and applied frequencies. The experimental results showed that the maximum collection efficiency reached was approximately 90%, and the dielectrophoretic velocity increased with increasing frequency and attained the maximum value of 10.85 ± 0.95 μm/s at 100 kHz, above which it decreased.
Collapse
Affiliation(s)
- Hyuk Rok Gwon
- School of Mechanical Engineering, Chung-Ang University, Heuksuk-dong, Dongjak-gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|