1
|
Kananizadeh N, Lee J, Mousavi ES, Rodenhausen KB, Sekora D, Schubert M, Bartelt-Hunt S, Schubert E, Zhang J, Li Y. Deposition of titanium dioxide nanoparticles onto engineered rough surfaces with controlled heights and properties. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2
|
Jin Y, Song B, Lin C, Zhang P, Dai S, Xu T, Nie Q. Extension of the Swanepoel method for obtaining the refractive index of chalcogenide thin films accurately at an arbitrary wavenumber. OPTICS EXPRESS 2017; 25:31273-31280. [PMID: 29245804 DOI: 10.1364/oe.25.031273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
The well-known Swanepoel method was often used to obtain the refractive index (RI) of thin films at the wavenumber values corresponding to the extremes of the transmission interference fringes. But it is difficult to accurately obtain the RI of chalcogenide thin films, especially at an arbitrary wavenumber. So a regional approach method (RAM) was presented here to extend the Swanepoel method to an arbitrary wavenumber. In the RAM the RI at the arbitrary wavenumber was determined through dynamic matching. The calculated values were used to match the experimental transmittance. The accuracy of the RI is better than 0.5%. The RI of a well-known film was obtained by the RAM. And the results are in great agreement with the true values of the RI of the film which indicates the correctness and effectiveness of the RAM. Moreover, the transmission spectrum of Ge-Sb-Se film was measured in the ultra-broadband range of 2000-18000 cm-1 (555-5000 nm), and finally the RI of the film was obtained at the 22 wavenumbers of the spacer 600 cm-1 by the RAM.
Collapse
|
3
|
Kewu L, Rui Z, Ning J, Youhua C, Minjuan Z, Liming W, Zhibin W. Fast and full range measurements of ellipsometric parameters using a 45° dual-drive symmetric photoelastic modulator. OPTICS EXPRESS 2017; 25:5725-5733. [PMID: 28380829 DOI: 10.1364/oe.25.005725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The fast and full range measurements of ellipsometric parameters ψ and Δ using a 45° dual-drive symmetric photoelastic modulator (PEM) are proposed. The PEM operates in a pure traveling modulation mode with a constant retardation magnitude and the modulation axis performing circular motion. A field programmable gate array is used to control the PEM and fulfill the data processing. The parameters sin 2ψ sinΔ, sin 2ψ cosΔ, and sin 2ψ can be measured simultaneously, providing accurate measurements of ψ and Δ over the full range. The experimental results show that the repeatability and sensitivity of this system are at 10-3°, and the data acquisition rate is 1 ms/point.
Collapse
|
4
|
Kananizadeh N, Rice C, Lee J, Rodenhausen KB, Sekora D, Schubert M, Schubert E, Bartelt-Hunt S, Li Y. Combined quartz crystal microbalance with dissipation (QCM-D) and generalized ellipsometry (GE) to characterize the deposition of titanium dioxide nanoparticles on model rough surfaces. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:118-128. [PMID: 27041442 DOI: 10.1016/j.jhazmat.2016.03.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/12/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Measuring the interactions between engineered nanoparticles and natural substrates (e.g. soils and sediments) has been very challenging due to highly heterogeneous and rough natural surfaces. In this study, three-dimensional nanostructured slanted columnar thin films (SCTFs), with well-defined roughness height and spacing, have been used to mimic surface roughness. Interactions between titanium dioxide nanoparticles (TiO2NP), the most extensively manufactured engineered nanomaterials, and SCTF coated surfaces were measured using a quartz crystal microbalance with dissipation monitoring (QCM-D). In parallel, in-situ generalized ellipsometry (GE) was coupled with QCM-D to simultaneously measure the amount of TiO2NP deposited on the surface of SCTF. While GE is insensitive to effects of mechanical water entrapment variations in roughness spaces, we found that the viscoelastic model, a typical QCM-D model analysis approach, overestimates the mass of deposited TiO2NP. This overestimation arises from overlaid frequency changes caused by particle deposition as well as additional water entrapment and partial water displacement upon nanoparticle adsorption. Here, we demonstrate a new approach to model QCM-D data, accounting for both viscoelastic effects and the effects of roughness-retained water. Finally, the porosity of attached TiO2NP layer was determined by coupling the areal mass density determined by QCM-D and independent GE measurements.
Collapse
Affiliation(s)
- Negin Kananizadeh
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Charles Rice
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Jaewoong Lee
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Department of Water Environmental Engineering Research, National Institute of Environmental Research 22755, Republic of Korea
| | - Keith B Rodenhausen
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Biolin Scientific, Inc., Paramus, NJ 07652, United States
| | - Derek Sekora
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Mathias Schubert
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Eva Schubert
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Shannon Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Yusong Li
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
5
|
Jin Y, Song B, Jia Z, Zhang Y, Lin C, Wang X, Dai S. Improvement of Swanepoel method for deriving the thickness and the optical properties of chalcogenide thin films. OPTICS EXPRESS 2017; 25:440-451. [PMID: 28085838 DOI: 10.1364/oe.25.000440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A tangencypoint method (TPM) is presented to derive the thickness and optical constants of chalcogenide thin films from their transmission spectra. It solves the problem of the abnormal value of thickness in the strong absorption region obtained by Swanepoel method. The accuracy of the thickness and refractive index is better than 0.5% by using this method. Moreover, comparing with Swanepoel method by using the same simulation and experimental data from the transmission spectrum, the accuracy of the thickness and refractive index obtained by the TPM is higher in the strong absorption region. Finally the dispersion and absorption coefficient of the chalcogenide films are obtained based on the experimental data of the transmission spectrum by using the TPM.
Collapse
|
6
|
Peev D, Hofmann T, Kananizadeh N, Beeram S, Rodriguez E, Wimer S, Rodenhausen KB, Herzinger CM, Kasputis T, Pfaunmiller E, Nguyen A, Korlacki R, Pannier A, Li Y, Schubert E, Hage D, Schubert M. Anisotropic contrast optical microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:113701. [PMID: 27910407 DOI: 10.1063/1.4965878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves sensitivity to a total mass required for detection by 4 orders of magnitude. We detail the design and operation principles of the anisotropic contrast optical microscope, and we present further applications to the detection of nanoparticles, to novel approaches for imaging chromatography and to new contrast modalities for observations on living cells.
Collapse
Affiliation(s)
- D Peev
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - T Hofmann
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - N Kananizadeh
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - S Beeram
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - E Rodriguez
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - S Wimer
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | - C M Herzinger
- J. A. Woollam Co., Inc., Lincoln, Nebraska 68508-2243, USA
| | - T Kasputis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - A Nguyen
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - R Korlacki
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - A Pannier
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Y Li
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - E Schubert
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - D Hage
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - M Schubert
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
7
|
Wilson PM, Zobel A, Zaitouna AJ, Lipatov A, Schubert E, Hofmann T, Schubert M, Lai R, Sinitskii A. Solution-stable anisotropic carbon nanotube/graphene hybrids based on slanted columnar thin films for chemical sensing. RSC Adv 2016. [DOI: 10.1039/c6ra09252g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Because of their structural anisotropy and stability in liquids, carbon nanotube/graphene hybrid structures are promising for biosensing applications, as shown in a proof-of-concept experiment on in situ ellipsometry monitoring of pyrene-functionalized DNA attachment.
Collapse
Affiliation(s)
- Peter M. Wilson
- Department of Chemistry
- University of Nebraska-Lincoln
- Lincoln
- USA
| | - Adam Zobel
- Department of Chemistry
- University of Nebraska-Lincoln
- Lincoln
- USA
| | | | - Alexey Lipatov
- Department of Chemistry
- University of Nebraska-Lincoln
- Lincoln
- USA
| | - Eva Schubert
- Department of Electrical Engineering
- University of Nebraska-Lincoln
- Lincoln
- USA
- Nebraska Center for Materials and Nanoscience
| | - Tino Hofmann
- Department of Electrical Engineering
- University of Nebraska-Lincoln
- Lincoln
- USA
- Nebraska Center for Materials and Nanoscience
| | - Mathias Schubert
- Department of Electrical Engineering
- University of Nebraska-Lincoln
- Lincoln
- USA
- Nebraska Center for Materials and Nanoscience
| | - Rebecca Lai
- Department of Chemistry
- University of Nebraska-Lincoln
- Lincoln
- USA
- Nebraska Center for Materials and Nanoscience
| | - Alexander Sinitskii
- Department of Chemistry
- University of Nebraska-Lincoln
- Lincoln
- USA
- Nebraska Center for Materials and Nanoscience
| |
Collapse
|
8
|
Investigation of Bovine Serum Albumin (BSA) Attachment onto Self-Assembled Monolayers (SAMs) Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D) and Spectroscopic Ellipsometry (SE). PLoS One 2015; 10:e0141282. [PMID: 26505481 PMCID: PMC4624694 DOI: 10.1371/journal.pone.0141282] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.
Collapse
|
9
|
Rodenhausen KB, Davis RS, Sekora D, Liang D, Mock A, Neupane R, Schmidt D, Hofmann T, Schubert E, Schubert M. The retention of liquid by columnar nanostructured surfaces during quartz crystal microbalance measurements and the effects of adsorption thereon. J Colloid Interface Sci 2015; 455:226-35. [DOI: 10.1016/j.jcis.2015.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022]
|
10
|
Kasputis T, Pieper A, Rodenhausen KB, Schmidt D, Sekora D, Rice C, Schubert E, Schubert M, Pannier AK. Use of precisely sculptured thin film (STF) substrates with generalized ellipsometry to determine spatial distribution of adsorbed fibronectin to nanostructured columnar topographies and effect on cell adhesion. Acta Biomater 2015; 18:88-99. [PMID: 25712389 DOI: 10.1016/j.actbio.2015.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 01/12/2023]
Abstract
Sculptured thin film (STF) substrates consist of nanocolumns with precise orientation, intercolumnar spacing, and optical anisotropy, which can be used as model biomaterial substrates to study the effect of homogenous nanotopogrophies on the three-dimensional distribution of adsorbed proteins. Generalized ellipsometry was used to discriminate between the distributions of adsorbed FN either on top of or within the intercolumnar void spaces of STFs, afforded by the optical properties of these precisely crafted substrates. Generalized ellipsometry indicated that STFs with vertical nanocolumns enhanced total FN adsorption two-fold relative to flat control substrates and the FN adsorption studies demonstrate different STF characteristics influence the degree of FN immobilization both on top and within intercolumnar spaces, with increasing spacing and surface area enhancing total protein adsorption. Mouse fibroblasts or mouse mesenchymal stem cells were subsequently cultured on STFs, to investigate the effect of highly ordered and defined nanotopographies on cell adhesion, spreading, and proliferation. All STF nanotopographies investigated in the absence of adsorbed FN were found to significantly enhance cell adhesion relative to flat substrates; and the addition of FN to STFs was found to have cell-dependent effects on enhancing cell-material interactions. Furthermore, the amount of FN adsorbed to the STFs did not correlate with comparative enhancements of cell-material interactions, suggesting that nanotopography predominantly contributes to the biocompatibility of homogenous nanocolumnar surfaces. This is the first study to correlate precisely defined nanostructured features with protein distribution and cell-nanomaterial interactions. STFs demonstrate immense potential as biomaterial surfaces for applications in tissue engineering, drug delivery, and biosensing.
Collapse
Affiliation(s)
- Tadas Kasputis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Alex Pieper
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Keith Brian Rodenhausen
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Daniel Schmidt
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Singapore Synchotron Light Source, National University of Singapore, 119077, Singapore; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Derek Sekora
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Charles Rice
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Eva Schubert
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Mathias Schubert
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
11
|
Combined QCM-D/GE as a tool to characterize stimuli-responsive swelling of and protein adsorption on polymer brushes grafted onto 3D-nanostructures. Anal Bioanal Chem 2014; 406:7233-42. [DOI: 10.1007/s00216-014-8154-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
|
12
|
Rodenhausen KB, Schmidt D, Rice C, Hofmann T, Schubert E, Schubert M. Detection of Organic Attachment onto Highly Ordered Three-Dimensional Nanostructure Thin Films by Generalized Ellipsometry and Quartz Crystal Microbalance with Dissipation Techniques. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-642-40128-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
13
|
Guo C, Kong M, Gao W, Li B. Simultaneous determination of optical constants, thickness, and surface roughness of thin film from spectrophotometric measurements. OPTICS LETTERS 2013; 38:40-42. [PMID: 23282831 DOI: 10.1364/ol.38.000040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A model taking into consideration the refractive index inhomogeneity and surface roughness of a film was proposed for the simultaneous determination of the optical constants, thickness, and surface roughness of a single-layer thin film from spectrophotometric measurements. In the model, the rough surface was treated as an effective absorbing layer. The model was applied to determine simultaneously the parameters of single-layer MgF(2) thin films deposited on fused silica substrates by the oblique-angle deposition technique. The film thicknesses and rms surface roughnesses extracted from spectrophotometric measurements with the proposed model were in good agreement with the values measured by a spectroscopic ellipsometer and an atomic force microscope, respectively.
Collapse
Affiliation(s)
- Chun Guo
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
| | | | | | | |
Collapse
|