Hütner J, Hoinkes T, Becker M, Rothhardt M, Rauschenbeutel A, Skoff SM. Nanofiber-based high-Q microresonator for cryogenic applications.
OPTICS EXPRESS 2020;
28:3249-3257. [PMID:
32121997 DOI:
10.1364/oe.381286]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
We demonstrate a cryo-compatible, fully fiber-integrated, alignment-free optical microresonator. The compatibility with low temperatures expands its possible applications to the wide field of solid-state quantum optics, where a cryogenic environment is often a requirement. At a temperature of 4.6 K we obtain a quality factor of (9.9 ± 0.7) × 106. In conjunction with the small mode volume provided by the nanofiber, this cavity can be either used in the coherent dynamics or the fast cavity regime, where it can provide a Purcell factor of up to 15. Our resonator is therefore suitable for significantly enhancing the coupling between light and a large variety of different quantum emitters and due to its proven performance over a wide temperature range, also lends itself for the implementation of quantum hybrid systems.
Collapse