• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4624706)   Today's Articles (353)   Subscriber (49419)
For: Bukowska DM, Derzsi L, Tamborski S, Szkulmowski M, Garstecki P, Wojtkowski M. Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography. Opt Express 2013;21:24025-24038. [PMID: 24104312 DOI: 10.1364/oe.21.024025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Number Cited by Other Article(s)
1
Kang YJ. Biomechanical Assessment of Red Blood Cells in Pulsatile Blood Flows. MICROMACHINES 2023;14:317. [PMID: 36838017 PMCID: PMC9958583 DOI: 10.3390/mi14020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
2
Ananthaseshan S, Bojakowski K, Sacharczuk M, Poznanski P, Skiba DS, Prahl Wittberg L, McKenzie J, Szkulmowska A, Berg N, Andziak P, Menkens H, Wojtkowski M, Religa D, Lundell F, Guzik T, Gaciong Z, Religa P. Red blood cell distribution width is associated with increased interactions of blood cells with vascular wall. Sci Rep 2022;12:13676. [PMID: 35953533 PMCID: PMC9366818 DOI: 10.1038/s41598-022-17847-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022]  Open
3
Ugawa M, Ota S. High‐Throughput Parallel Optofluidic 3D‐Imaging Flow Cytometry. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]  Open
4
Organ-on-a-Chip: Design and Simulation of Various Microfluidic Channel Geometries for the Influence of Fluid Dynamic Parameters. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
5
Untracht GR, Matos RS, Dikaios N, Bapir M, Durrani AK, Butsabong T, Campagnolo P, Sampson DD, Heiss C, Sampson DM. OCTAVA: An open-source toolbox for quantitative analysis of optical coherence tomography angiography images. PLoS One 2021;16:e0261052. [PMID: 34882760 PMCID: PMC8659314 DOI: 10.1371/journal.pone.0261052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]  Open
6
Design Methodology of Passive In-Line Relays for Molecular Communication in Flow-Induced Microfluidic Channel. BIOSENSORS-BASEL 2021;11:bios11030065. [PMID: 33673714 PMCID: PMC7997331 DOI: 10.3390/bios11030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022]
7
Techaumnat B, Panklang N, Wisitsoraat A, Suzuki Y. Study on the discrete dielectrophoresis for particle–cell separation. Electrophoresis 2020;41:991-1001. [DOI: 10.1002/elps.201900473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/05/2023]
8
Catarino SO, Rodrigues RO, Pinho D, Miranda JM, Minas G, Lima R. Blood Cells Separation and Sorting Techniques of Passive Microfluidic Devices: From Fabrication to Applications. MICROMACHINES 2019;10:mi10090593. [PMID: 31510012 PMCID: PMC6780402 DOI: 10.3390/mi10090593] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/23/2023]
9
Guruprasad P, Mannino RG, Caruso C, Zhang H, Josephson CD, Roback JD, Lam WA. Integrated automated particle tracking microfluidic enables high-throughput cell deformability cytometry for red cell disorders. Am J Hematol 2019;94:189-199. [PMID: 30417938 DOI: 10.1002/ajh.25345] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022]
10
Gusenbauer M, Tóthová R, Mazza G, Brandl M, Schrefl T, Jančigová I, Cimrák I. Cell Damage Index as Computational Indicator for Blood Cell Activation and Damage. Artif Organs 2018;42:746-755. [PMID: 29608016 PMCID: PMC6099442 DOI: 10.1111/aor.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/24/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
11
Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations. SENSORS 2017;17:s17092037. [PMID: 28878199 PMCID: PMC5620946 DOI: 10.3390/s17092037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 01/29/2023]
12
Wijesinghe RE, Park K, Kim DH, Jeon M, Kim J. In vivo imaging of melanoma-implanted magnetic nanoparticles using contrast-enhanced magneto-motive optical Doppler tomography. JOURNAL OF BIOMEDICAL OPTICS 2016;21:64001. [PMID: 27334932 DOI: 10.1117/1.jbo.21.6.064001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
13
Lauri J, Bykov A, Fabritius T. Quantification of cell-free layer thickness and cell distribution of blood by optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2016;21:40501. [PMID: 27071412 DOI: 10.1117/1.jbo.21.4.040501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/22/2016] [Indexed: 05/25/2023]
14
Ossowski P, Raiter-Smiljanic A, Szkulmowska A, Bukowska D, Wiese M, Derzsi L, Eljaszewicz A, Garstecki P, Wojtkowski M. Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup. OPTICS EXPRESS 2015;23:27724-38. [PMID: 26480435 DOI: 10.1364/oe.23.027724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
15
Wojtkiewicz S, Wojcik-Sosnowska E, Jasik M, Maniewski R, Karnafel W, Liebert A. Assessment of speed distribution of red blood cells in the microvascular network in healthy volunteers and type 1 diabetes using laser Doppler spectra decomposition. Physiol Meas 2014;35:283-95. [PMID: 24434915 DOI: 10.1088/0967-3334/35/2/283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA