1
|
Woo CM, Li H, Zhao Q, Lai P. Dynamic mutation enhanced particle swarm optimization for optical wavefront shaping. OPTICS EXPRESS 2021; 29:18420-18426. [PMID: 34154097 DOI: 10.1364/oe.425615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Particle swarm optimization (PSO) is a well-known iterative algorithm commonly adopted in wavefront shaping for focusing light through or inside scattering media. The performance is, however, limited by premature convergence in an unstable environment. Therefore, we aim to solve this problem and enhance the focusing performance by adding a dynamic mutation operation into the plain PSO. With dynamic mutation, the "particles," or the optimized masks, are mutated with quantifiable discrepancy between the current and theoretical optimal solution, i.e., the "error rate." Gauged by that, the diversity of the "particles" is effectively expanded, and the adaptability of the algorithm to noise and instability is significantly promoted, yielding optimization approaching the theoretical optimum. The simulation and experimental results show that PSO with dynamic mutation demonstrates considerably better performance than PSO without mutation or with a constant mutation, especially under a noisy environment.
Collapse
|
2
|
Kim D, Lee S, Lee M, Oh J, Yang SA, Park Y. Holotomography: Refractive Index as an Intrinsic Imaging Contrast for 3-D Label-Free Live Cell Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:211-238. [PMID: 33834439 DOI: 10.1007/978-981-33-6064-8_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Live cell imaging provides essential information in the investigation of cell biology and related pathophysiology. Refractive index (RI) can serve as intrinsic optical imaging contrast for 3-D label-free and quantitative live cell imaging, and provide invaluable information to understand various dynamics of cells and tissues for the study of numerous fields. Recently significant advances have been made in imaging methods and analysis approaches utilizing RI, which are now being transferred to biological and medical research fields, providing novel approaches to investigate the pathophysiology of cells. To provide insight into how RI can be used as an imaging contrast for imaging of biological specimens, here we provide the basic principle of RI-based imaging techniques and summarize recent progress on applications, ranging from microbiology, hematology, infectious diseases, hematology, and histopathology.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sangyun Lee
- Department of Physics, KAIST, Daejeon, South Korea
| | - Moosung Lee
- Department of Physics, KAIST, Daejeon, South Korea
| | - Juntaek Oh
- Department of Physics, KAIST, Daejeon, South Korea
| | - Su-A Yang
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - YongKeun Park
- Department of Physics, KAIST, Daejeon, South Korea. .,KAIST Institute Health Science and Technology, Daejeon, South Korea. .,Tomocube Inc., Daejeon, South Korea.
| |
Collapse
|
3
|
Kanngiesser J, Roth B. Wavefront Shaping Concepts for Application in Optical Coherence Tomography-A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7044. [PMID: 33316998 PMCID: PMC7763956 DOI: 10.3390/s20247044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Optical coherence tomography (OCT) enables three-dimensional imaging with resolution on the micrometer scale. The technique relies on the time-of-flight gated detection of light scattered from a sample and has received enormous interest in applications as versatile as non-destructive testing, metrology and non-invasive medical diagnostics. However, in strongly scattering media such as biological tissue, the penetration depth and imaging resolution are limited. Combining OCT imaging with wavefront shaping approaches significantly leverages the capabilities of the technique by controlling the scattered light field through manipulation of the field incident on the sample. This article reviews the main concepts developed so far in the field and discusses the latest results achieved with a focus on signal enhancement and imaging.
Collapse
Affiliation(s)
- Jonas Kanngiesser
- Hannoversches Zentrum für Optische Technologien, Leibniz Universität Hannover, Nienburger Straße 17, D-30167 Hannover, Germany;
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering–Innovation Across Disciplines), D-30167 Hannover, Germany
| | - Bernhard Roth
- Hannoversches Zentrum für Optische Technologien, Leibniz Universität Hannover, Nienburger Straße 17, D-30167 Hannover, Germany;
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering–Innovation Across Disciplines), D-30167 Hannover, Germany
| |
Collapse
|
4
|
A tube-source X-ray microtomography approach for quantitative 3D microscopy of optically challenging cell-cultured samples. Commun Biol 2020; 3:548. [PMID: 33009501 PMCID: PMC7532209 DOI: 10.1038/s42003-020-01273-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/03/2020] [Indexed: 01/23/2023] Open
Abstract
Development and study of cell-cultured constructs, such as tissue-engineering scaffolds or organ-on-a-chip platforms require a comprehensive, representative view on the cells inside the used materials. However, common characteristics of biomedical materials, for example, in porous, fibrous, rough-surfaced, and composite materials, can severely disturb low-energy imaging. In order to image and quantify cell structures in optically challenging samples, we combined labeling, 3D X-ray imaging, and in silico processing into a methodological pipeline. Cell-structure images were acquired by a tube-source X-ray microtomography device and compared to optical references for assessing the visual and quantitative accuracy. The spatial coverage of the X-ray imaging was demonstrated by investigating stem-cell nuclei inside clinically relevant-sized tissue-engineering scaffolds (5x13 mm) that were difficult to examine with the optical methods. Our results highlight the potential of the readily available X-ray microtomography devices that can be used to thoroughly study relative large cell-cultured samples with microscopic 3D accuracy. Tamminen et al. show that a commercial, tube-source µCT device combined with computational image analysis can be used to obtain quantitative 3D data for cellular structures in optically-challenging samples hard to image using other methods.
Collapse
|
5
|
Kanngiesser J, Roth B. Effect of image artefacts on phase conjugation with spectral domain optical coherence tomography. OPTICS EXPRESS 2020; 28:18224-18240. [PMID: 32680023 DOI: 10.1364/oe.393259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Recently the acquisition of the time-resolved reflection matrix was demonstrated based on spectral domain optical coherence tomography. In principle, the matrix describes the linear dependence of the OCT signal received from different depths on the field which is incident to the scattering sample. Knowledge of the matrix, hence, enables beam shaping to selectively enhance the received signal, for example to increase the penetration depth when imaging turbid media. We investigate the impact of image artefacts on the approach. Phase conjugation is shown to enhance the OCT signal, but not autocorrelation and mirror artefacts. Imaging applications are demonstrated indicating the potential for future in-vivo studies on biotissues.
Collapse
|
6
|
Spectral Domain Optical Coherence Tomography Imaging Performance Improvement Based on Field Curvature Aberration-Corrected Spectrometer. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We designed and fabricated a telecentric f-theta imaging lens (TFL) to improve the imaging performance of spectral domain optical coherence tomography (SD-OCT). By tailoring the field curvature aberration of the TFL, the flattened focal surface was well matched to the detector plane. Simulation results showed that the spot in the focal plane fitted well within a single pixel and the modulation transfer function at high spatial frequencies showed higher values compared with those of an achromatic doublet imaging lens, which are commonly used in SD-OCT spectrometers. The spectrometer using the TFL had an axial resolution of 7.8 μm, which was similar to the theoretical value of 6.2 μm. The spectrometer was constructed so that the achromatic doublet lens was replaced by the TFL. As a result, the SD-OCT imaging depth was improved by 13% (1.85 mm) on a 10 dB basis in the roll-off curve and showed better sensitivity at the same depth. The SD-OCT images of a multi-layered tape and a human palm proved that the TFL was able to achieve deeper imaging depth and better contrast. This feature was seen very clearly in the depth profile of the image. SD-OCT imaging performance can be improved simply by changing the spectrometer’s imaging lens. By optimizing the imaging lens, deeper SD-OCT imaging can be achieved with improved sensitivity.
Collapse
|
7
|
Double Interferometer Design for Independent Wavefront Manipulation in Spectral Domain Optical Coherence Tomography. Sci Rep 2019; 9:14651. [PMID: 31601904 PMCID: PMC6787192 DOI: 10.1038/s41598-019-50996-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/23/2019] [Indexed: 11/18/2022] Open
Abstract
Spectral domain optical coherence tomography (SD-OCT) is a highly versatile method which allows for three dimensional optical imaging in scattering media. A number of recent publications demonstrated the technique to benefit from structured illumination and beam shaping approaches, e.g. to enhance the signal-to-noise ratio or the penetration depth with samples such as biological tissue. We present a compact and easy to implement design for independent wavefront manipulation and beam shaping at the reference and sample arm of the interferometric OCT device. The design requires a single spatial light modulator and can be integrated to existing free space SD-OCT systems by modifying the source arm only. We provide analytical and numerical discussion of the presented design as well as experimental data confirming the theoretical analysis. The system is highly versatile and lends itself for applications where independent phase or wavefront control is required. We demonstrate the system to be used for wavefront sensorless adaptive optics as well as for iterative optical wavefront shaping for OCT signal enhancement in strongly scattering media.
Collapse
|
8
|
Kanngiesser J, Rahlves M, Roth B. Iterative wavefront correction for complex spectral domain optical coherence tomography. OPTICS LETTERS 2019; 44:1347-1350. [PMID: 30874647 DOI: 10.1364/ol.44.001347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
We propose a compact setup for wavefront manipulation in spectral domain optical coherence tomography (OCT). The system can easily be implemented into existing free-space OCT setups through modification of the source path only. We demonstrate complex-valued OCT signal acquisition based on phase shifting combined with iterative optical wavefront shaping, which locally enhances the OCT signal acquired from within a scattering sample. The system lends itself to future imaging studies in strongly scattering media such as biological tissue.
Collapse
|
9
|
Liu S, Lamont MRE, Mulligan JA, Adie SG. Aberration-diverse optical coherence tomography for suppression of multiple scattering and speckle. BIOMEDICAL OPTICS EXPRESS 2018; 9:4919-4935. [PMID: 30319912 PMCID: PMC6179412 DOI: 10.1364/boe.9.004919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 05/05/2023]
Abstract
Multiple scattering is a major barrier that limits the optical imaging depth in scattering media. In order to alleviate this effect, we demonstrate aberration-diverse optical coherence tomography (AD-OCT), which exploits the phase correlation between the deterministic signals from single-scattered photons to suppress the random background caused by multiple scattering and speckle. AD-OCT illuminates the sample volume with diverse aberrated point spread functions, and computationally removes these intentionally applied aberrations. After accumulating 12 astigmatism-diverse OCT volumes, we show a 10 dB enhancement in signal-to-background ratio via a coherent average of reconstructed signals from a USAF target located 7.2 scattering mean free paths below a thick scattering layer, and a 3× speckle contrast reduction from an incoherent average of reconstructed signals inside the scattering layer. This AD-OCT method, when implemented using astigmatic illumination, is a promising approach for ultra-deep volumetric optical coherence microscopy.
Collapse
Affiliation(s)
- Siyang Liu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Michael R. E. Lamont
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey A. Mulligan
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Fayyaz Z, Mohammadian N, Salimi F, Fatima A, Tabar MRR, Avanaki MRN. Simulated annealing optimization in wavefront shaping controlled transmission. APPLIED OPTICS 2018; 57:6233-6242. [PMID: 30118010 DOI: 10.1364/ao.57.006233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
In this research, we present results of simulated annealing (SA), a heuristic optimization algorithm, for focusing light through a turbid medium. Performance of the algorithm on phase and amplitude modulations has been evaluated. A number of tips to tune the optimization parameters are provided. The effect of measurement noise on the performance of the SA algorithm is explored. Additionally, SA performance is compared with continuous sequential and briefly with other optimization algorithms.
Collapse
|
11
|
Liu S, Mulligan JA, Adie SG. Volumetric optical coherence microscopy with a high space-bandwidth- time product enabled by hybrid adaptive optics. BIOMEDICAL OPTICS EXPRESS 2018; 9:3137-3152. [PMID: 29984088 PMCID: PMC6033577 DOI: 10.1364/boe.9.003137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 05/06/2023]
Abstract
Optical coherence microscopy (OCM) is a promising modality for high resolution imaging, but has limited ability to capture large-scale volumetric information about dynamic biological processes with cellular resolution. To enhance the throughput of OCM, we implemented a hybrid adaptive optics (hyAO) approach that combines computational adaptive optics with an intentionally aberrated imaging beam generated via hardware adaptive optics. Using hyAO, we demonstrate the depth-equalized illumination and collection ability of an astigmatic beam compared to a Gaussian beam for cellular-resolution imaging. With this advantage, we achieved volumetric OCM with a higher space-bandwidth-time product compared to Gaussian-beam acquisition that employed focus-scanning across depth. HyAO was also used to perform volumetric time-lapse OCM imaging of cellular dynamics over a 1mm × 1mm × 1mm field-of-view with 2 μm isotropic spatial resolution and 3-minute temporal resolution. As hyAO is compatible with both spectral-domain and swept-source beam-scanning OCM systems, significant further improvements in absolute volumetric throughput are possible by use of ultrahigh-speed swept sources.
Collapse
Affiliation(s)
- Siyang Liu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey A. Mulligan
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Somkuwar AS, Das B, Vinu RV, Park Y, Singh RK. Holographic imaging through a scattering layer using speckle interferometry. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2017; 34:1392-1399. [PMID: 29036106 DOI: 10.1364/josaa.34.001392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Optical imaging through complex scattering media is one of the major technical challenges with important applications in many research fields, ranging from biomedical imaging to astronomical telescopy to spatially multiplexed optical communications. Various approaches for imaging through a turbid layer have been recently proposed that exploit the advantage of object information encoded in correlations of the random optical fields. Here we propose and experimentally demonstrate an alternative approach for single-shot imaging of objects hidden behind an opaque scattering layer. The proposed technique relies on retrieving the interference fringes projected behind the scattering medium, which leads to complex field reconstruction, from far-field laser speckle interferometry with two-point intensity correlation measurement. We demonstrate that under suitable conditions, it is possible to perform imaging to reconstruct the complex amplitude of objects situated at different depths.
Collapse
|
13
|
Yu H, Lee K, Park Y. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes. OPTICS EXPRESS 2017; 25:8036-8047. [PMID: 28380926 DOI: 10.1364/oe.25.008036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We propose and demonstrate a system for wavefront shaping, which generates optical foci through complex disordered media and achieves an enhancement factor of greater than 100,000. To exploit the 1 megapixel capacity of a digital micro-mirror device and its fast frame rate, we developed a fast and efficient method to handle the heavy matrix algebra computation involved in optimizing the focus. We achieved an average enhancement factor of 101,391 within an optimization time of 73 minutes with amplitude control. This unprecedented enhancement factor may open new possibilities for realistic image projection and the efficient delivery of energy through scattering media.
Collapse
|
14
|
Tzang O, Niv E, Caravaca-Aguirre AM, Piestun R. Thermal expansion feedback for wave-front shaping. OPTICS EXPRESS 2017; 25:6122-6131. [PMID: 28380967 DOI: 10.1364/oe.25.006122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Focusing inside scattering media is a challenging task with a variety of applications in biomedicine. State of the art methods mostly require invasive feedback inside or behind the sample, limiting practical use. We present a technique for dynamic control and focusing inside scattering media that combines two powerful methods: optical coherence tomography (OCT) and wave-front shaping (WFS). We use OCT as a non-invasive feedback for WFS optimization of a separate, penetrating laser. Energy absorbed in the sample, creates thermal expansions that are used for the feedback mechanism. By maximizing thermal deformations within a selected focal region, we demonstrate enhanced focusing of light through scattering media beyond the ballistic regime and within the penetration range of OCT.
Collapse
|
15
|
Liu YZ, South FA, Xu Y, Carney PS, Boppart SA. Computational optical coherence tomography [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1549-1574. [PMID: 28663849 PMCID: PMC5480564 DOI: 10.1364/boe.8.001549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) has become an important imaging modality with numerous biomedical applications. Challenges in high-speed, high-resolution, volumetric OCT imaging include managing dispersion, the trade-off between transverse resolution and depth-of-field, and correcting optical aberrations that are present in both the system and sample. Physics-based computational imaging techniques have proven to provide solutions to these limitations. This review aims to outline these computational imaging techniques within a general mathematical framework, summarize the historical progress, highlight the state-of-the-art achievements, and discuss the present challenges.
Collapse
Affiliation(s)
- Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
| | - Fredrick A. South
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
| | - Yang Xu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
| | - P. Scott Carney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
- Departments of Bioengineering and Internal Medicine, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
16
|
Yu H, Lee P, Jo Y, Lee K, Tuchin VV, Jeong Y, Park Y. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:121510. [PMID: 27792807 DOI: 10.1117/1.jbo.21.12.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for <italic<ex vivo</italic< mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.
Collapse
Affiliation(s)
- Hyeonseung Yu
- Korea Advanced Institute of Science and Technology, Department of Physics, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of KoreabKAIST Institute of Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Peter Lee
- KAIST Institute of Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of KoreacKorea Advanced Institute of Science and Technology, Department of Bio and Brain Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - YoungJu Jo
- Korea Advanced Institute of Science and Technology, Department of Physics, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of KoreabKAIST Institute of Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - KyeoReh Lee
- Korea Advanced Institute of Science and Technology, Department of Physics, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of KoreabKAIST Institute of Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Valery V Tuchin
- Saratov National Research State University, Research-Education Institute of Optics and Biophotonics, 83, Astrakhanskaya Street, Saratov 410012, RussiaeInstitute of Precision Mechanics and Control of Russian Academy of Sciences, Laboratory of Laser Diagnostics of Technical and Living Systems, 24, Rabochaya Street, Saratov 410028, RussiafNational Research Tomsk State University, Laboratory of Biophotonics, 36, Lenin's Avenue, Tomsk 634050, Russia
| | - Yong Jeong
- KAIST Institute of Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of KoreacKorea Advanced Institute of Science and Technology, Department of Bio and Brain Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - YongKeun Park
- Korea Advanced Institute of Science and Technology, Department of Physics, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of KoreabKAIST Institute of Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
17
|
Yu H, Lee P, Lee K, Jang J, Lim J, Jang W, Jeong Y, Park Y. In vivo deep tissue imaging using wavefront shaping optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:101406. [PMID: 26895566 DOI: 10.1117/1.jbo.21.10.101406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Multiple light scattering in tissue limits the penetration of optical coherence tomography (OCT) imaging. Here, we present in vivo OCT imaging of a live mouse using wavefront shaping (WS) to enhance the penetration depth. A digital micromirror device was used in a spectral-domain OCT system for complex WS of an incident beam which resulted in the optimal delivery of light energy into deep tissue. Ex vivo imaging of chicken breasts and mouse ear tissues showed enhancements in the strength of the image signals and the penetration depth, and in vivo imaging of the tail of a live mouse provided a multilayered structure inside the tissue.
Collapse
Affiliation(s)
- Hyeonseung Yu
- Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 34141, Republic of KoreabKI for optical Science and Technology, Daejeon 34141, Republic of Korea
| | - Peter Lee
- KI for optical Science and Technology, Daejeon 34141, Republic of KoreacKorea Advanced Institute of Science and Technology, Department of Bio and Brain Engineering, Daejeon 34141, Republic of Korea
| | - KyeoReh Lee
- Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 34141, Republic of KoreabKI for optical Science and Technology, Daejeon 34141, Republic of Korea
| | - Jaeduck Jang
- Samsung Advanced Institute of Technology, Suwon, Gyeonggi 16678, Republic of Korea
| | - Jaeguyn Lim
- Samsung Electronics, Suwon, Gyeonggi 16677, Republic of Korea
| | - Wooyoung Jang
- Samsung Electronics, Suwon, Gyeonggi 16677, Republic of Korea
| | - Yong Jeong
- KI for optical Science and Technology, Daejeon 34141, Republic of KoreacKorea Advanced Institute of Science and Technology, Department of Bio and Brain Engineering, Daejeon 34141, Republic of Korea
| | - YongKeun Park
- Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 34141, Republic of KoreabKI for optical Science and Technology, Daejeon 34141, Republic of KoreafTomocube, Inc., Daejeon 34051, Republic of Korea
| |
Collapse
|
18
|
Li Y, Liu R, Wang Y, Wen D, Meng L, Lu J, Li P. Detecting relative speed changes of moving objects through scattering medium by using wavefront shaping and laser speckle contrast analysis. OPTICS EXPRESS 2016; 24:8382-8390. [PMID: 27137275 DOI: 10.1364/oe.24.008382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Imaging through a scattering medium has been a main challenge in modern optical imaging field. Recently, imaging through scattering medium based on wavefront shaping has been reported. However, it has not been clearly investigated to apply the optical memory effect based iterative wavefront shaping technique in speed estimation of a moving object through scattering medium. Here, we proposed to combine the iterative wavefront shaping technique with laser speckle contrast analysis method to detect the relative speed changes of moving objects through scattering medium. Phantom experiments were performed to validate our method.
Collapse
|
19
|
Kim K, Yu H, Koh J, Shin JH, Lee W, Park Y. Remote sensing of pressure inside deformable microchannels using light scattering in Scotch tape. OPTICS LETTERS 2016; 41:1837-1840. [PMID: 27082358 DOI: 10.1364/ol.41.001837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a simple but effective method to measure the pressure inside a deformable microchannel using laser scattering in a translucent Scotch tape. Our idea exploits the fact that the speckle pattern generated by a turbid layer is sensitive to the changes in the optical wavefront of an impinging beam. A change in the internal pressure of a channel deforms the elastic channel, which can be detected by measuring the speckle patterns of a coherent laser beam that has passed through the channel and the Scotch tape. We demonstrate that with a proper calibration, internal pressure can be remotely sensed with the resolution of 0.1 kPa within a pressure range of 0-3 kPa after calibration.
Collapse
|
20
|
Yoon J, Lee M, Lee K, Kim N, Kim JM, Park J, Yu H, Choi C, Heo WD, Park Y. Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping. Sci Rep 2015; 5:13289. [PMID: 26293590 PMCID: PMC4543936 DOI: 10.1038/srep13289] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/22/2015] [Indexed: 12/04/2022] Open
Abstract
We introduce a non-invasive approach for optogenetic regulation in biological cells through highly scattering skull tissue using wavefront shaping. The wavefront of the incident light was systematically controlled using a spatial light modulator in order to overcome multiple light-scattering in a mouse skull layer and to focus light on the target cells. We demonstrate that illumination with shaped waves enables spatiotemporal regulation of intracellular Ca2+ level at the individual-cell level.
Collapse
Affiliation(s)
- Jonghee Yoon
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Minji Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - KyeoReh Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Nury Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Jin Man Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Jongchan Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Hyeonseung Yu
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Chulhee Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 305-811, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| |
Collapse
|
21
|
Guillet JP, Recur B, Balacey H, Bou Sleiman J, Darracq F, Lewis D, Mounaix P. Low-frequency noise effect on terahertz tomography using thermal detectors. APPLIED OPTICS 2015; 54:6758-6762. [PMID: 26368091 DOI: 10.1364/ao.54.006758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, the impact of low-frequency noise on terahertz-computed tomography (THz-CT) is analyzed for several measurement configurations and pyroelectric detectors. We acquire real noise data from a continuous millimeter-wave tomographic scanner in order to figure out its impact on reconstructed images. Second, noise characteristics are quantified according to two distinct acquisition methods by (i) extrapolating from experimental acquisitions a sinogram for different noise backgrounds and (ii) reconstructing the corresponding spatial distributions in a slice using a CT reconstruction algorithm. Then we describe the low-frequency noise fingerprint and its influence on reconstructed images. Thanks to the observations, we demonstrate that some experimental choices can dramatically affect the 3D rendering of reconstructions. Thus, we propose some experimental methodologies optimizing the resulting quality and accuracy of the 3D reconstructions, with respect to the low-frequency noise characteristics observed during acquisitions.
Collapse
|
22
|
Abstract
Light scattering was thought to be the fundamental limitation for the depth at which optical imaging methods can retain their resolution and sensitivity. However, it was shown that light can be focused inside even the most strongly scattering objects by spatially shaping the wavefront of the incident light. This review summarizes recently developed feedback-based approaches for focusing light inside and through scattering objects.
Collapse
|
23
|
Yoon J, Lee K, Park J, Park Y. Measuring optical transmission matrices by wavefront shaping. OPTICS EXPRESS 2015; 23:10158-10167. [PMID: 25969058 DOI: 10.1364/oe.23.010158] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We introduce a simple but practical method to measure the optical transmission matrix (TM) of complex media. The optical TM of a complex medium is obtained by modulating the wavefront of a beam impinging on the complex medium and imaging the transmitted full-field speckle intensity patterns. Using the retrieved TM, we demonstrate the generation and linear combination of multiple foci on demand through the complex medium. This method will be used as a versatile tool for coherence control of waves through turbid media.
Collapse
|
24
|
Park J, Park JH, Yu H, Park Y. Focusing through turbid media by polarization modulation. OPTICS LETTERS 2015; 40:1667-70. [PMID: 25872043 DOI: 10.1364/ol.40.001667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We demonstrate that polarization modulation of an illumination beam can effectively control the spatial profile of the light transmitted through turbid media. Since the transmitted electric fields are completely mingled in turbid media, polarization states of an illumination beam can be used effectively to control the propagation of light through turbid media. Numerical simulations were performed which agree with experimental results obtained using a commercial in-plane switching liquid crystal display for modulating the input polarization states.
Collapse
|
25
|
Kumar A, Kamali T, Platzer R, Unterhuber A, Drexler W, Leitgeb RA. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT. BIOMEDICAL OPTICS EXPRESS 2015; 6:1124-34. [PMID: 25908999 PMCID: PMC4399654 DOI: 10.1364/boe.6.001124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 05/22/2023]
Abstract
In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 [Formula: see text]for a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 [Formula: see text]at a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue.
Collapse
Affiliation(s)
- Abhishek Kumar
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna,
Austria
- Christian Doppler Laboratory for Laser Development and their Application to Medicine and Biology, Waehringer Guertel 18-20 A-1090 Vienna,
Austria
| | - Tschackad Kamali
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna,
Austria
| | - René Platzer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19 A-1090 Vienna,
Austria
| | - Angelika Unterhuber
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna,
Austria
| | - Wolfgang Drexler
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna,
Austria
- Christian Doppler Laboratory for Laser Development and their Application to Medicine and Biology, Waehringer Guertel 18-20 A-1090 Vienna,
Austria
| | - Rainer A. Leitgeb
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna,
Austria
- Christian Doppler Laboratory for Laser Development and their Application to Medicine and Biology, Waehringer Guertel 18-20 A-1090 Vienna,
Austria
| |
Collapse
|
26
|
Jung J, Kim K, Yu H, Lee K, Lee S, Nahm S, Park H, Park Y. Biomedical applications of holographic microspectroscopy [invited]. APPLIED OPTICS 2014; 53:G111-22. [PMID: 25322118 DOI: 10.1364/ao.53.00g111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The identification and quantification of specific molecules are crucial for studying the pathophysiology of cells, tissues, and organs as well as diagnosis and treatment of diseases. Recent advances in holographic microspectroscopy, based on quantitative phase imaging or optical coherence tomography techniques, show promise for label-free noninvasive optical detection and quantification of specific molecules in living cells and tissues (e.g., hemoglobin protein). To provide important insight into the potential employment of holographic spectroscopy techniques in biological research and for related practical applications, we review the principles of holographic microspectroscopy techniques and highlight recent studies.
Collapse
|