1
|
Kumar T, Harish AV, Etcheverry S, Margulis W, Laurell F, Russom A. Lab-in-a-fiber-based integrated particle separation and counting. LAB ON A CHIP 2023; 23:2286-2293. [PMID: 37070926 DOI: 10.1039/d2lc01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An all-fiber integrated device capable of separating and counting particles is presented. A sequence of silica fiber capillaries with various diameters and longitudinal cavities are used to fabricate the component for size-based elasto-inertial passive separation of particles followed by detection in an uninterrupted continuous flow. Experimentally, fluorescent particles of 1 μm and 10 μm sizes are mixed in a visco-elastic fluid and fed into the all-fiber separation component. The particles are sheathed by an elasticity enhancer (PEO - polyethylene oxide) to the side walls. Larger 10 μm particles migrate to the center of the silica capillary due to the combined inertial lift force and elastic force, while the smaller 1 μm particles are unaffected, and exit from a side capillary. A separation efficiency of 100% for the 10 μm and 97% for the 1 μm particles is achieved at a total flow rate of 50 μL min-1. To the best of our knowledge, this is the first time effective inertial-based separation has been demonstrated in circular cross-section microchannels. In the following step, the separated 10 μm particles are routed through another all-fiber component for counting and a counting throughput of ∼1400 particles per min is demonstrated. We anticipate the ability to combine high throughput separation and precise 3D control of particle position for ease of counting will aid in the development of advanced microflow cytometers capable of particle separation and quantification for various biomedical applications.
Collapse
Affiliation(s)
- T Kumar
- Division of Nanobiotechnology, Department of Protein Science, Science for life laboratory, KTH Royal Institute of Technology, Solna, Sweden.
| | - A V Harish
- Laser Physics, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - S Etcheverry
- Research Institutes of Sweden (RISE), Stockholm, Sweden
| | - W Margulis
- Research Institutes of Sweden (RISE), Stockholm, Sweden
| | - F Laurell
- Laser Physics, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - A Russom
- Division of Nanobiotechnology, Department of Protein Science, Science for life laboratory, KTH Royal Institute of Technology, Solna, Sweden.
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
2
|
Parker HE, Sengupta S, Harish AV, Soares RRG, Joensson HN, Margulis W, Russom A, Laurell F. A Lab-in-a-Fiber optofluidic device using droplet microfluidics and laser-induced fluorescence for virus detection. Sci Rep 2022; 12:3539. [PMID: 35241725 PMCID: PMC8894408 DOI: 10.1038/s41598-022-07306-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023] Open
Abstract
Microfluidics has emerged rapidly over the past 20 years and has been investigated for a variety of applications from life sciences to environmental monitoring. Although continuous-flow microfluidics is ubiquitous, segmented-flow or droplet microfluidics offers several attractive features. Droplets can be independently manipulated and analyzed with very high throughput. Typically, microfluidics is carried out within planar networks of microchannels, namely, microfluidic chips. We propose that fibers offer an interesting alternative format with key advantages for enhanced optical coupling. Herein, we demonstrate the generation of monodisperse droplets within a uniaxial optofluidic Lab-in-a-Fiber scheme. We combine droplet microfluidics with laser-induced fluorescence (LIF) detection achieved through the development of an optical side-coupling fiber, which we term a periscope fiber. This arrangement provides stable and compact alignment. Laser-induced fluorescence offers high sensitivity and low detection limits with a rapid response time making it an attractive detection method for in situ real-time measurements. We use the well-established fluorophore, fluorescein, to characterize the Lab-in-a-Fiber device and determine the generation of [Formula: see text] 0.9 nL droplets. We present characterization data of a range of fluorescein concentrations, establishing a limit of detection (LOD) of 10 nM fluorescein. Finally, we show that the device operates within a realistic and relevant fluorescence regime by detecting reverse-transcription loop-mediated isothermal amplification (RT-LAMP) products in the context of COVID-19 diagnostics. The device represents a step towards the development of a point-of-care droplet digital RT-LAMP platform.
Collapse
Affiliation(s)
- Helen E. Parker
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,grid.9531.e0000000106567444Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Sanghamitra Sengupta
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,grid.417889.b0000 0004 0646 2441AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Achar V. Harish
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
| | - Ruben R. G. Soares
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden
| | - Haakan N. Joensson
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden
| | - Walter Margulis
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,Research Institutes of Sweden (RISE), 164 19 Stockholm, Sweden
| | - Aman Russom
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden ,grid.5037.10000000121581746AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Laurell
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
| |
Collapse
|
3
|
Etcheverry S, Faridi A, Ramachandraiah H, Kumar T, Margulis W, Laurell F, Russom A. High performance micro-flow cytometer based on optical fibres. Sci Rep 2017; 7:5628. [PMID: 28717236 PMCID: PMC5514097 DOI: 10.1038/s41598-017-05843-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/05/2017] [Indexed: 12/05/2022] Open
Abstract
Flow cytometry is currently the gold standard for analysis of cells in the medical laboratory and biomedical research. Fuelled by the need of point-of-care diagnosis, a significant effort has been made to miniaturize and reduce cost of flow cytometers. However, despite recent advances, current microsystems remain less versatile and much slower than their large-scale counterparts. In this work, an all-silica fibre microflow cytometer is presented that measures fluorescence and scattering from particles and cells. It integrates cell transport in circular capillaries and light delivery by optical fibres. Single-stream cell focusing is performed by Elasto-inertial microfluidics to guarantee accurate and sensitive detection. The capability of this technique is extended to high flow rates (up to 800 µl/min), enabling a throughput of 2500 particles/s. The robust, portable and low-cost system described here could be the basis for a point-of-care flow cytometer with a performance comparable to commercial systems.
Collapse
Affiliation(s)
- S Etcheverry
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
- Department of Fibre Optics, RISE Acreo AB, Stockholm, Sweden.
| | - A Faridi
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - H Ramachandraiah
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - T Kumar
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - W Margulis
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Fibre Optics, RISE Acreo AB, Stockholm, Sweden
| | - F Laurell
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - A Russom
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|