1
|
Kim J, Lee SJ. Digital in-line holographic microscopy for label-free identification and tracking of biological cells. Mil Med Res 2024; 11:38. [PMID: 38867274 PMCID: PMC11170804 DOI: 10.1186/s40779-024-00541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Digital in-line holographic microscopy (DIHM) is a non-invasive, real-time, label-free technique that captures three-dimensional (3D) positional, orientational, and morphological information from digital holographic images of living biological cells. Unlike conventional microscopies, the DIHM technique enables precise measurements of dynamic behaviors exhibited by living cells within a 3D volume. This review outlines the fundamental principles and comprehensive digital image processing procedures employed in DIHM-based cell tracking methods. In addition, recent applications of DIHM technique for label-free identification and digital tracking of various motile biological cells, including human blood cells, spermatozoa, diseased cells, and unicellular microorganisms, are thoroughly examined. Leveraging artificial intelligence has significantly enhanced both the speed and accuracy of digital image processing for cell tracking and identification. The quantitative data on cell morphology and dynamics captured by DIHM can effectively elucidate the underlying mechanisms governing various microbial behaviors and contribute to the accumulation of diagnostic databases and the development of clinical treatments.
Collapse
Affiliation(s)
- Jihwan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
2
|
Wang Z, Giugliano G, Behal J, Schiavo M, Memmolo P, Miccio L, Grilli S, Nazzaro F, Ferraro P, Bianco V. All-optical dual module platform for motility-based functional scrutiny of microencapsulated probiotic bacteria. BIOMEDICAL OPTICS EXPRESS 2024; 15:2202-2223. [PMID: 38633099 PMCID: PMC11019698 DOI: 10.1364/boe.510543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 04/19/2024]
Abstract
Probiotic bacteria are widely used in pharmaceutics to offer health benefits. Microencapsulation is used to deliver probiotics into the human body. Capsules in the stomach have to keep bacteria constrained until release occurs in the intestine. Once outside, bacteria must maintain enough motility to reach the intestine walls. Here, we develop a platform based on two label-free optical modules for rapidly screening and ranking probiotic candidates in the laboratory. Bio-speckle dynamics assay tests the microencapsulation effectiveness by simulating the gastrointestinal transit. Then, a digital holographic microscope 3D-tracks their motility profiles at a single element level to rank the strains.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, Napoli 80125, Italy
| | - Giusy Giugliano
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Jaromir Behal
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
- Department of Optics, Faculty of Science, Palacky University, 17. listopadu 12, Olomouc 77146, Czechia
| | - Michela Schiavo
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Pasquale Memmolo
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Lisa Miccio
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Simonetta Grilli
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Filomena Nazzaro
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (ISA-CNR), Via Roma, 64, Avellino 83100, Italy
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| | - Vittorio Bianco
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, National Research Council (ISASI-CNR), Via Campi Flegrei, 34, Pozzuoli, 80078, Italy
| |
Collapse
|
3
|
Rogalski M, Arcab P, Stanaszek L, Micó V, Zuo C, Trusiak M. Physics-driven universal twin-image removal network for digital in-line holographic microscopy. OPTICS EXPRESS 2024; 32:742-761. [PMID: 38175095 DOI: 10.1364/oe.505440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Digital in-line holographic microscopy (DIHM) enables efficient and cost-effective computational quantitative phase imaging with a large field of view, making it valuable for studying cell motility, migration, and bio-microfluidics. However, the quality of DIHM reconstructions is compromised by twin-image noise, posing a significant challenge. Conventional methods for mitigating this noise involve complex hardware setups or time-consuming algorithms with often limited effectiveness. In this work, we propose UTIRnet, a deep learning solution for fast, robust, and universally applicable twin-image suppression, trained exclusively on numerically generated datasets. The availability of open-source UTIRnet codes facilitates its implementation in various DIHM systems without the need for extensive experimental training data. Notably, our network ensures the consistency of reconstruction results with input holograms, imparting a physics-based foundation and enhancing reliability compared to conventional deep learning approaches. Experimental verification was conducted among others on live neural glial cell culture migration sensing, which is crucial for neurodegenerative disease research.
Collapse
|
4
|
Gangadhar A, Sari-Sarraf H, Vanapalli SA. Deep learning assisted holography microscopy for in-flow enumeration of tumor cells in blood. RSC Adv 2023; 13:4222-4235. [PMID: 36760296 PMCID: PMC9892890 DOI: 10.1039/d2ra07972k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Currently, detection of circulating tumor cells (CTCs) in cancer patient blood samples relies on immunostaining, which does not provide access to live CTCs, limiting the breadth of CTC-based applications. Here, we take the first steps to address this limitation, by demonstrating staining-free enumeration of tumor cells spiked into lysed blood samples using digital holographic microscopy (DHM), microfluidics and machine learning (ML). A 3D-printed module for laser assembly was developed to simplify the optical set up for holographic imaging of cells flowing through a sheath-based microfluidic device. Computational reconstruction of the holograms was performed to localize the cells in 3D and obtain the plane of best focus images to train deep learning models. We developed a custom-designed light-weight shallow Network dubbed s-Net and compared its performance against off-the-shelf CNN models including ResNet-50. The accuracy, sensitivity and specificity of the s-Net model was found to be higher than the off-the-shelf ML models. By applying an optimized decision threshold to mixed samples prepared in silico, the false positive rate was reduced from 1 × 10-2 to 2.77 × 10-4. Finally, the developed DHM-ML framework was successfully applied to enumerate spiked MCF-7 breast cancer cells and SkOV3 ovarian cancer cells from lysed blood samples containing white blood cells (WBCs) at concentrations typical of label-free enrichment techniques. We conclude by discussing the advances that need to be made to translate the DHM-ML approach to staining-free enumeration of actual CTCs in cancer patient blood samples.
Collapse
Affiliation(s)
- Anirudh Gangadhar
- Department of Chemical Engineering, Texas Tech University Lubbock TX 79409 USA
| | - Hamed Sari-Sarraf
- Department of Electrical and Computer Engineering, Texas Tech UniversityLubbockTX 79409USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech UniversityLubbockTX 79409USA
| |
Collapse
|
5
|
Yamato K, Iuchi M, Oku H. High-Speed and Low-Latency 3D Fluorescence Imaging for Robotic Microscope. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, we propose a high-speed and low-latency 3D fluorescence imaging method for robotic microscopes. The prototype system consists of a focus-tunable lens called a TAG lens, which operates at several hundred kHz, an image intensifier (I.I.) that enhances faint light such as fluorescence, and a high-speed vision system that can transfer acquired images to the host PC in 500 Hz. The proposed method can acquire images at arbitrary focal lengths at frame rates on the order of 1 kHz by synchronizing the focal-length fluctuation of the TAG lens and the exposure timing of the I.I., whose duration is a few hundred nanoseconds. The low-latency we aim for in this paper is on the order of a few milliseconds. A prototype system was developed to validate the proposed method. High-speed 3D tracking of the Brownian motion of a fluorescent bead of 0.5 μm diameter was demonstrated to verify the feedback performance of the proposed low-latency 3D fluorescence imaging method.
Collapse
|
6
|
Rose KA, Gogotsi N, Galarraga JH, Burdick JA, Murray CB, Lee D, Composto RJ. Shape Anisotropy Enhances Nanoparticle Dynamics in Nearly Homogeneous Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katie A. Rose
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Natalie Gogotsi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Jonathan H. Galarraga
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado80309, United States
| | - Christopher B. Murray
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Russell J. Composto
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
7
|
Budini N, Sallese M, Cencha LG, Berli CLA, Urteaga R. Digital holographic microscopy implementation for capillary filling measurements in nanoporous materials. APPLIED OPTICS 2022; 61:2506-2512. [PMID: 35471315 DOI: 10.1364/ao.450570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
We report the implementation of lensless off-axis digital holographic microscopy as a non-destructive optical analyzer for nano-scale structures. The measurement capacity of the system was validated by analyzing the topography of a metallic grid with ≈150nm thick opaque features. In addition, an experimental configuration of self-reference was included to study the dynamics of the capillary filling phenomena in nanostructured porous silicon. The fluid front position as a function of time was extracted from the holograms, and the typical square root of time kinematics was recovered. The results shown are in agreement with previous works on capillary imbibition in similar structures and confirm a first step towards unifying holographic methods with fluid dynamics theory to develop a spatially resolved capillary tomography system for nanoporous materials characterization.
Collapse
|
8
|
Palma V, Gutiérrez MS, Vargas O, Parthasarathy R, Navarrete P. Methods to Evaluate Bacterial Motility and Its Role in Bacterial–Host Interactions. Microorganisms 2022; 10:microorganisms10030563. [PMID: 35336138 PMCID: PMC8953368 DOI: 10.3390/microorganisms10030563] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial motility is a widespread characteristic that can provide several advantages for the cell, allowing it to move towards more favorable conditions and enabling host-associated processes such as colonization. There are different bacterial motility types, and their expression is highly regulated by the environmental conditions. Because of this, methods for studying motility under realistic experimental conditions are required. A wide variety of approaches have been developed to study bacterial motility. Here, we present the most common techniques and recent advances and discuss their strengths as well as their limitations. We classify them as macroscopic or microscopic and highlight the advantages of three-dimensional imaging in microscopic approaches. Lastly, we discuss methods suited for studying motility in bacterial–host interactions, including the use of the zebrafish model.
Collapse
Affiliation(s)
- Victoria Palma
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - María Soledad Gutiérrez
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
| | - Orlando Vargas
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA;
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
- Correspondence:
| |
Collapse
|
9
|
Zhang Y, Zhu Y, Lam EY. Holographic 3D particle reconstruction using a one-stage network. APPLIED OPTICS 2022; 61:B111-B120. [PMID: 35201132 DOI: 10.1364/ao.444856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Volumetric reconstruction of a three-dimensional (3D) particle field with high resolution and low latency is an ambitious and valuable task. As a compact and high-throughput imaging system, digital holography (DH) encodes the 3D information of a particle volume into a two-dimensional (2D) interference pattern. In this work, we propose a one-stage network (OSNet) for 3D particle volumetric reconstruction. Specifically, by a single feed-forward process, OSNet can retrieve the 3D coordinates of the particles directly from the holograms without high-fidelity image reconstruction at each depth slice. Evaluation results from both synthetic and experimental data confirm the feasibility and robustness of our method under different particle concentrations and noise levels in terms of detection rate and position accuracy, with improved processing speed. The additional applications of 3D particle tracking are also investigated, facilitating the analysis of the dynamic displacements and motions for micro-objects or cells. It can be further extended to various types of computational imaging problems sharing similar traits.
Collapse
|
10
|
Meng S, Chen R, Xie J, Li J, Cheng J, Xu Y, Cao H, Wu X, Zhang Q, Wang H. Surface-enhanced Raman scattering holography chip for rapid, sensitive and multiplexed detection of human breast cancer-associated MicroRNAs in clinical samples. Biosens Bioelectron 2021; 190:113470. [PMID: 34229191 DOI: 10.1016/j.bios.2021.113470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
MicroRNAs (miRNAs) are promising biomarkers for the early diagnosis of breast cancer. Yet, simultaneous achievement of rapid, sensitive and accurate detection of diverse miRNAs in clinical samples is still challenging due to the low abundance of miRNAs and the complex procedures of RNA extraction and separation. Herein, we develop an innovative three-dimensional (3D) surface-enhanced Raman scattering (SERS) holography sensing strategy for rapid, sensitive and multiplexed detection of human breast cancer-associated miRNAs. To establish a proof of concept, nine kinds of human breast cancer-associated miRNAs are isothermally amplified by Exonuclease (Exo) III enzyme, and the products could be spatially separated to corresponding sensing region on silicon SERS substrates. Each region has been modified with corresponding hairpin DNA probes, which are used to identify and quantify the miRNAs. Different DNA probes are labeled with different Raman reporters, which serve as "SERS tags" to incorporate spectroscopic information into computer-generated 3D SERS hologram within ~9 min. We demonstrate that 3D SERS holography chip not only achieves an ultrahigh sensitivity down to ~1 aM but also feature a high correlation with RT-qPCR in the detection of nine miRNAs in 30 clinical serum samples. This work provides a feasible tool to improve the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Sifan Meng
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Runzhi Chen
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jingxuan Xie
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jing Li
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jiayi Cheng
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yanan Xu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haiting Cao
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaofeng Wu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qiang Zhang
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Houyu Wang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
11
|
Grognot M, Taute KM. More than propellers: how flagella shape bacterial motility behaviors. Curr Opin Microbiol 2021; 61:73-81. [PMID: 33845324 DOI: 10.1016/j.mib.2021.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/22/2022]
Abstract
Bacteria use a wide variety of flagellar architectures to navigate their environment. While the iconic run-tumble motility strategy of the peritrichously flagellated Escherichia coli has been well studied, recent work has revealed a variety of new motility behaviors that can be achieved with different flagellar architectures, such as single, bundled, or opposing polar flagella. The recent discovery of various flagellar gymnastics such as flicking and flagellar wrapping is increasingly shifting the view from flagella as passive propellers to versatile appendages that can be used in a wide range of conformations. Here, we review recent observations of how flagella shape motility behaviors and summarize the nascent structure-function map linking flagellation and behavior.
Collapse
Affiliation(s)
- Marianne Grognot
- Rowland Institute at Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142, USA
| | - Katja M Taute
- Rowland Institute at Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
Calin VL, Mihailescu M, Tarba N, Sandu AM, Scarlat E, Moisescu MG, Savopol T. Digital holographic microscopy evaluation of dynamic cell response to electroporation. BIOMEDICAL OPTICS EXPRESS 2021; 12:2519-2530. [PMID: 33996245 PMCID: PMC8086444 DOI: 10.1364/boe.421959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 05/30/2023]
Abstract
Phase-derived parameters and time autocorrelation functions were used to analyze the behavior of murine B16 cells exposed to different amplitudes of electroporation pulses. Cells were observed using an off-axis digital holographic microscope equipped with a fast camera. Series of quantitative phase images of cells were reconstructed and further processed using MATLAB codes. Projected area, dry mass density, and entropy proved to be predictors for permeabilized cells that swell or collapse. Autocorrelation functions of phase fluctuations in different regions of the cell showed a good correlation with the local effectiveness of permeabilization.
Collapse
Affiliation(s)
- Violeta L. Calin
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
| | - Mona Mihailescu
- Digital Holography Imaging and Processing Laboratory, Physics Department, Faculty of Applied Sciences, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Nicolae Tarba
- Physics Department, Faculty of Applied Sciences, Doctoral School of Automatic Control and Computers, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Ana Maria Sandu
- CAMPUS Research Center, Doctoral School of Electrical Engineering, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Eugen Scarlat
- Digital Holography Imaging and Processing Laboratory, Physics Department, Faculty of Applied Sciences, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Mihaela G. Moisescu
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
| |
Collapse
|
13
|
Dynamic swimming pattern of Pseudomonas aeruginosa near a vertical wall during initial attachment stages of biofilm formation. Sci Rep 2021; 11:1952. [PMID: 33479476 PMCID: PMC7820011 DOI: 10.1038/s41598-021-81621-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/08/2021] [Indexed: 11/22/2022] Open
Abstract
Studying the swimming behaviour of bacteria in 3 dimensions (3D) allows us to understand critical biological processes, such as biofilm formation. It is still unclear how near wall swimming behaviour may regulate the initial attachment and biofilm formation. It is challenging to address this as visualizing the movement of bacteria with reasonable spatial and temporal resolution in a high-throughput manner is technically difficult. Here, we compared the near wall (vertical) swimming behaviour of P. aeruginosa (PAO1) and its mutants ΔdipA (reduced in swarming motility and increased in biofilm formation) and ΔfimX (deficient in twitching motility and reduced in biofilm formation) using our new imaging technique based on light sheet microscopy. We found that P. aeruginosa (PAO1) increases its speed and changes its swimming angle drastically when it gets closer to a wall. In contrast, ΔdipA mutant moves toward the wall with steady speed without changing of swimming angle. The near wall behavior of ΔdipA allows it to be more effective to interact with the wall or wall-attached cells, thus leading to more adhesion events and a larger biofilm volume during initial attachment when compared with PAO1. Furthermore, we found that ΔfimX has a similar near wall swimming behavior as PAO1. However, it has a higher dispersal frequency and smaller biofilm formation when compared with PAO1 which can be explained by its poor twitching motility. Together, we propose that near wall swimming behavior of P. aeruginosa plays an important role in the regulation of initial attachment and biofilm formation.
Collapse
|
14
|
Abstract
<abstract>
<p>Digital holographic microscopy provides the ability to observe throughout a large volume without refocusing. This capability enables simultaneous observations of large numbers of microorganisms swimming in an essentially unconstrained fashion. However, computational tools for tracking large 4D datasets remain lacking. In this paper, we examine the errors introduced by tracking bacterial motion as 2D projections vs. 3D volumes under different circumstances: bacteria free in liquid media and bacteria near a glass surface. We find that while XYZ speeds are generally equal to or larger than XY speeds, they are still within empirical uncertainties. Additionally, when studying dynamic surface behavior, the Z coordinate cannot be neglected.</p>
</abstract>
Collapse
|
15
|
Liebel M, Pazos-Perez N, van Hulst NF, Alvarez-Puebla RA. Surface-enhanced Raman scattering holography. NATURE NANOTECHNOLOGY 2020; 15:1005-1011. [PMID: 32989239 DOI: 10.1038/s41565-020-0771-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/26/2020] [Indexed: 05/26/2023]
Abstract
Nanometric probes based on surface-enhanced Raman scattering (SERS) are promising candidates for all-optical environmental, biological and technological sensing applications with intrinsic quantitative molecular specificity. However, the effectiveness of SERS probes depends on a delicate trade-off between particle size, stability and brightness that has so far hindered their wide application in SERS imaging methodologies. In this Article, we introduce holographic Raman microscopy, which allows single-shot three-dimensional single-particle localization. We validate our approach by simultaneously performing Fourier transform Raman spectroscopy of individual SERS nanoparticles and Raman holography, using shearing interferometry to extract both the phase and the amplitude of wide-field Raman images and ultimately localize and track single SERS nanoparticles inside living cells in three dimensions. Our results represent a step towards multiplexed single-shot three-dimensional concentration mapping in many different scenarios, including live cell and tissue interrogation and complex anti-counterfeiting applications.
Collapse
Affiliation(s)
- Matz Liebel
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Nicolas Pazos-Perez
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain
| | - Niek F van Hulst
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain.
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
16
|
Buzalewicz I, Karwańska M, Wieliczko A, Podbielska H. On the application of multi-parametric optical phenotyping of bacterial colonies for multipurpose microbiological diagnostics. Biosens Bioelectron 2020; 172:112761. [PMID: 33129071 DOI: 10.1016/j.bios.2020.112761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
The development of new diagnostics techniques and modalities is critical for early detection of microbial contamination. In this study, the novel integrated system for multi-parametric optical phenotyping and characterization of bacterial colonies, is presented. The system combines Mach-Zehnder interferometer with a spectral imaging system for capturing multispectral diffraction patterns and multispectral two-dimensional transmission maps of bacterial colonies, along with the simultaneous interferometric profilometry. The herein presented investigation was carried out on five representative bacteria species and nearly 3000 registered multispectral optical signatures. The interferograms were analyzed by four-step phase shift algorithm to reconstruct the colony profile to enable the obtaining of the comparable optical signatures. The dedicated image processing algorithms were used for extraction of quantitative features of these signatures. The random forest algorithm was applied for selection of the most predictive set of features, which were used in classification model based on Support-Vector Machine. Obtained results have shown that the use of multiple multispectral optical signatures provide a multi-parametric bacteria identification at an exceptionally high accuracy (99.4-100%), significantly better than in case of classification based on each of these signatures (multispectral diffraction patterns, two-dimensional transmission coefficient maps), separately. Obtained results revealed that analysis of multispectral signatures can also be applied for characterisation of physical, physicochemical and chemical properties of the bacterial colonies in the presence of the antimicrobial factors. Therefore, the proposed label-free, non-destructive optical technique has perspectives to be exploited in the multipurpose diagnostics and it can be used as a pre-screening tool in microbiological laboratories.
Collapse
Affiliation(s)
- Igor Buzalewicz
- Bio-Optics Group, Department of Biomedical Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370, Wroclaw, Poland.
| | - Magdalena Karwańska
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Wroclaw University of Environmental and Life Science, 45 Grunwaldzki Square, 50-366, Wroclaw, Poland
| | - Alina Wieliczko
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Wroclaw University of Environmental and Life Science, 45 Grunwaldzki Square, 50-366, Wroclaw, Poland
| | - Halina Podbielska
- Bio-Optics Group, Department of Biomedical Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370, Wroclaw, Poland
| |
Collapse
|
17
|
Wang G, Huang G, Gong X, Zhang G. Method for 3D tracking behaviors of interplaying bacteria individuals. OPTICS EXPRESS 2020; 28:28060-28071. [PMID: 32988085 DOI: 10.1364/oe.401032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Behaviors of platonic bacteria individuals are profoundly influenced by their interplay. However, probing such interplay still remains a challenge since identification and tracking of bacterial individuals becomes difficult as they come close and interact with each other. Herein, we report 3D tracking of the motions of multiple bacteria by using digital holographic microscopy (DHM), where the subtle 3D behaviors can be characterized as bacteria approach and run away from each other. An algorithm was developed to identify and recover the gap between 3D trajectory segments raising by the interruption from other bacteria through lateral image recognition and axial loalization utilizing cost function. We value the performance of the algorithm in terms of the statistics in trajectory length and correct rate. The study clearly shows how the interplaying Escherichia coli alter their motions.
Collapse
|
18
|
Deng J, Molaei M, Chisholm NG, Stebe KJ. Motile Bacteria at Oil-Water Interfaces: Pseudomonas aeruginosa. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6888-6902. [PMID: 32097012 DOI: 10.1021/acs.langmuir.9b03578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacteria are important examples of active or self-propelled colloids. Because of their directed motion, they accumulate near interfaces. There, they can become trapped and swim adjacent to the interface via hydrodynamic interactions, or they can adsorb directly and swim in an adhered state with complex trajectories that differ from those in bulk in both form and spatiotemporal implications. We have adopted the monotrichous bacterium Pseudomonas aeruginosa PA01 as a model species and have studied its motion at oil-aqueous interfaces. We have identified conditions in which bacteria swim persistently without restructuring the interface, allowing detailed and prolonged study of their motion. In addition to characterizing the ensemble behavior of the bacteria, we have observed a gallery of distinct trajectories of individual swimmers on and near fluid interfaces. We attribute these diverse swimming behaviors to differing trapped states for the bacteria in the fluid interface. These trajectory types include Brownian diffusive paths for passive adsorbed bacteria, curvilinear trajectories including curly paths with radii of curvature larger than the cell body length, and rapid pirouette motions with radii of curvature comparable to the cell body length. Finally, we see interfacial visitors that come and go from the interfacial plane. We characterize these individual swimmer motions. This work may impact nutrient cycles for bacteria on or near interfaces in nature. This work will also have implications in microrobotics, as active colloids in general and bacteria in particular are used to carry cargo in this burgeoning field. Finally, these results have implications in engineering of active surfaces that exploit interfacially trapped self-propelled colloids.
Collapse
Affiliation(s)
- Jiayi Deng
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, United States
| | - Mehdi Molaei
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, United States
| | - Nicholas G Chisholm
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
19
|
Yamato K, Chiba H, Oku H. High Speed Three Dimensional Tracking of Swimming Cell by Synchronous Modulation Between TeCE Camera and TAG Lens. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2969911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Amann S, Witzleben MV, Breuer S. 3D-printable portable open-source platform for low-cost lens-less holographic cellular imaging. Sci Rep 2019; 9:11260. [PMID: 31375772 PMCID: PMC6677730 DOI: 10.1038/s41598-019-47689-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Digital holographic microscopy is an emerging, potentially low-cost alternative to conventional light microscopy for micro-object imaging on earth, underwater and in space. Immediate access to micron-scale objects however requires a well-balanced system design and sophisticated reconstruction algorithms, that are commercially available, however not accessible cost-efficiently. Here, we present an open-source implementation of a lens-less digital inline holographic microscope platform, based on off-the-shelf optical, electronic and mechanical components, costing less than $190. It employs a Blu-Ray semiconductor-laser-pickup or a light-emitting-diode, a pinhole, a 3D-printed housing consisting of 3 parts and a single-board portable computer and camera with an open-source implementation of the Fresnel-Kirchhoff routine. We demonstrate 1.55 μm spatial resolution by laser-pickup and 3.91 μm by the light-emitting-diode source. The housing and mechanical components are 3D printed. Both printer and reconstruction software source codes are open. The light-weight microscope allows to image label-free micro-spheres of 6.5 μm diameter, human red-blood-cells of about 8 μm diameter as well as fast-growing plant Nicotiana-tabacum-BY-2 suspension cells with 50 μm sizes. The imaging capability is validated by imaging-contrast quantification involving a standardized test target. The presented 3D-printable portable open-source platform represents a fully-open design, low-cost modular and versatile imaging-solution for use in high- and low-resource areas of the world.
Collapse
Affiliation(s)
- Stephan Amann
- Institute for Applied Physics, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289, Darmstadt, Germany
| | - Max von Witzleben
- Institute for Applied Physics, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289, Darmstadt, Germany
| | - Stefan Breuer
- Institute for Applied Physics, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289, Darmstadt, Germany.
| |
Collapse
|
21
|
Yamato K, Yamashita T, Chiba H, Oku H. Fast Volumetric Feedback under Microscope by Temporally Coded Exposure Camera. SENSORS 2019; 19:s19071606. [PMID: 30987133 PMCID: PMC6480176 DOI: 10.3390/s19071606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/26/2022]
Abstract
We developed a temporally coded exposure (TeCE) camera that can cope with high-speed focus variations of a tunable acoustic gradient index (TAG) lens. The TeCE camera can execute a very short exposure multiple times at an arbitrary timing during one shot. Furthermore, by accumulating the photoelectrons generated by each exposure, it is possible to maintain the brightness even with a short exposure time. By synchronously driving the TeCE camera and the TAG lens, different focal planes of an observation target can be acquired at high speed. As a result, high-speed three-dimensional measurement becomes possible, and this can be used for feedback of three-dimensional information. In the work described in this paper, we conducted a focus tracking experiment to evaluate the feedback performance of the TeCE camera. From the experimental results, we confirmed the feedback capability of the TeCE camera.
Collapse
Affiliation(s)
- Kazuki Yamato
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan.
| | - Toshihiko Yamashita
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan.
| | - Hiroyuki Chiba
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan.
| | - Hiromasa Oku
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan.
| |
Collapse
|
22
|
Kim YS, Lee S, Jung J, Shin S, Choi HG, Cha GH, Park W, Lee S, Park Y. Combining Three-Dimensional Quantitative Phase Imaging and Fluorescence Microscopy for the Study of Cell Pathophysiology. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:267-277. [PMID: 30258314 PMCID: PMC6153632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Quantitative phase imaging (QPI) has emerged as one of the powerful imaging tools for the study of live cells in a non-invasive manner. In particular, multimodal approaches combining QPI and fluorescence microscopic techniques have been recently developed for superior spatiotemporal resolution as well as high molecular specificity. In this review, we briefly summarize recent advances in three-dimensional QPI combined with fluorescence techniques for the correlative study of cell pathophysiology. Through this review, biologists and clinicians can be provided with insights on this rapidly growing field of research and may find broader applications to investigate unrevealed nature in cell physiology and related diseases.
Collapse
Affiliation(s)
- Young Seo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea,Tomocube Inc., Daejeon, Republic of Korea,KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - SangYun Lee
- KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - JaeHwang Jung
- KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - Seungwoo Shin
- KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - He-Gwon Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Guang-Ho Cha
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Weisun Park
- Tomocube Inc., Daejeon, Republic of Korea,KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - Sumin Lee
- Tomocube Inc., Daejeon, Republic of Korea
| | - YongKeun Park
- Tomocube Inc., Daejeon, Republic of Korea,KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea,To whom all correspondence should be addressed: YongKeun Park, Department of Physics, KAIST, Daejeon, Republic of Korea;
| |
Collapse
|
23
|
Yamato K, Chiba H, Yamashita T, Oku H. 1-ms Three-Dimensional Feedback Microscope With 69-kHz Synchronous Modulation of Focal Position and Illumination. IEEE Robot Autom Lett 2018. [DOI: 10.1109/lra.2018.2792151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Bedrossian M, El-Kholy M, Neamati D, Nadeau J. A machine learning algorithm for identifying and tracking bacteria in three dimensions using Digital Holographic Microscopy. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.1.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Films of bacteria at interfaces. Adv Colloid Interface Sci 2017; 247:561-572. [PMID: 28778342 DOI: 10.1016/j.cis.2017.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 11/21/2022]
Abstract
Bacteria are often discussed as active colloids, self-propelled organisms whose collective motion can be studied in the context of non-equilibrium statistical mechanics. In such studies, the behavior of bacteria confined to interfaces or in the proximity of an interface plays an important role. For instance, many studies have probed collective behavior of bacteria in quasi two-dimensional systems such as soap films. Since fluid interfaces can adsorb surfactants and other materials, the stress and velocity boundary conditions at interfaces can alter bacteria motion; hydrodynamic studies of interfaces with differing boundary conditions are reviewed. Also, bacteria in bulk can become trapped at or near fluid interfaces, where they colonize and form structures comprising secretions like exopolysaccharides, surfactants, living and dead bacteria, thereby creating Films of Bacteria at Interfaces (FBI). The formation of FBI is discussed at air-water, oil-water, and water-water interfaces, with an emphasis on film mechanics, and with some allusion to genetic functions guiding bacteria to restructure fluid interfaces. At air-water interfaces, bacteria form pellicles or interfacial biofilms. Studies are reviewed that reveal that pellicle material properties differ for different strains of bacteria, and that pellicle physicochemistry can act as a feedback mechanism to regulate film formation. At oil-water interfaces, a range of FBI form, depending on bacteria strain. Some bacteria-laden interfaces age from an initial active film, with dynamics dominated by motile bacteria, through viscoelastic states, to form an elastic film. Others remain active with no evidence of elastic film formation even at significant interface ages. Finally, bacteria can adhere to and colonize ultra-low surface tension interfaces such as aqueous-aqueous systems common in food industries. Relevant literature is reviewed, and areas of interest for potential application are discussed, ranging from health to bioremediation.
Collapse
|
26
|
Zelenka C, Koch R. Improved wavefront correction for coherent image restoration. OPTICS EXPRESS 2017; 25:18797-18816. [PMID: 29041073 DOI: 10.1364/oe.25.018797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
Coherent imaging has a wide range of applications in, for example, microscopy, astronomy, and radar imaging. Particularly interesting is the field of microscopy, where the optical quality of the lens is the main limiting factor. In this article, novel algorithms for the restoration of blurred images in a system with known optical aberrations are presented. Physically motivated by the scalar diffraction theory, the new algorithms are based on Haugazeau POCS and FISTA, and are faster and more robust than methods presented earlier. With the new approach the level of restoration quality on real images is very high, thereby blurring and ringing caused by defocus can be effectively removed. In classical microscopy, lenses with very low aberration must be used, which puts a practical limit on their size and numerical aperture. A coherent microscope using the novel restoration method overcomes this limitation. In contrast to incoherent microscopy, severe optical aberrations including defocus can be removed, hence the requirements on the quality of the optics are lower. This can be exploited for an essential price reduction of the optical system. It can be also used to achieve higher resolution than in classical microscopy, using lenses with high numerical aperture and high aberration. All this makes the coherent microscopy superior to the traditional incoherent in suited applications.
Collapse
|
27
|
Lemoine A, Delvigne F, Bockisch A, Neubauer P, Junne S. Tools for the determination of population heterogeneity caused by inhomogeneous cultivation conditions. J Biotechnol 2017; 251:84-93. [DOI: 10.1016/j.jbiotec.2017.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/01/2023]
|
28
|
Mostaghaci B, Yasa O, Zhuang J, Sitti M. Bioadhesive Bacterial Microswimmers for Targeted Drug Delivery in the Urinary and Gastrointestinal Tracts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700058. [PMID: 28638787 PMCID: PMC5473323 DOI: 10.1002/advs.201700058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/18/2017] [Indexed: 05/09/2023]
Abstract
Bacteria-driven biohybrid microswimmers (bacteriabots), which integrate motile bacterial cells and functional synthetic cargo parts (e.g., microparticles encapsulating drug), are recently studied for targeted drug delivery. However, adhesion of such bacteriabots to the tissues on the site of a disease (which can increase the drug delivery efficiency) is not studied yet. Here, this paper proposes an approach to attach bacteriabots to certain types of epithelial cells (expressing mannose on the membrane), based on the affinity between lectin molecules on the tip of bacterial type I pili and mannose molecules on the epithelial cells. It is shown that the bacteria can anchor their cargo particles to mannose-functionalized surfaces and mannose-expressing cells (ATCC HTB-9) using the lectin-mannose bond. The attachment mechanism is confirmed by comparing the adhesion of bacteriabots fabricated from bacterial strains with or without type I pili to mannose-covered surfaces and cells. The proposed bioadhesive motile system can be further improved by expressing more specific adhesion moieties on the membrane of the bacteria.
Collapse
Affiliation(s)
- Babak Mostaghaci
- Physical Intelligence DepartmentMax‐Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Oncay Yasa
- Physical Intelligence DepartmentMax‐Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Jiang Zhuang
- Physical Intelligence DepartmentMax‐Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Metin Sitti
- Physical Intelligence DepartmentMax‐Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
29
|
Molaei M, Sheng J. Succeed escape: Flow shear promotes tumbling of Escherichia colinear a solid surface. Sci Rep 2016; 6:35290. [PMID: 27752062 PMCID: PMC5082759 DOI: 10.1038/srep35290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
Understanding how bacteria move close to a surface under various stimuli is crucial for a broad range of microbial processes including biofilm formation, bacterial transport and migration. While prior studies focus on interactions between single stimulus and bacterial suspension, we emphasize on compounding effects of flow shear and solid surfaces on bacterial motility, especially reorientation and tumble. We have applied microfluidics and digital holographic microscopy to capture a large number (>105) of 3D Escherichia coli trajectories near a surface under various flow shear. We find that near-surface flow shear promotes cell reorientation and mitigates the tumble suppression and re-orientation confinement found in a quiescent flow, and consequently enhances surface normal bacterial dispersion. Conditional sampling suggests that two complimentary hydrodynamic mechanisms, Jeffrey Orbit and shear-induced flagella unbundling, are responsible for the enhancement in bacterial tumble motility. These findings imply that flow shear may mitigate cell trapping and prevent biofilm initiation.
Collapse
Affiliation(s)
- Mehdi Molaei
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, United States of America
| | - Jian Sheng
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
30
|
Bocanegra Evans H, Gorumlu S, Aksak B, Castillo L, Sheng J. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars. Sci Rep 2016; 6:28753. [PMID: 27353632 PMCID: PMC4926118 DOI: 10.1038/srep28753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022] Open
Abstract
Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars.
Collapse
Affiliation(s)
| | - Serdar Gorumlu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Burak Aksak
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Luciano Castillo
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Jian Sheng
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| |
Collapse
|
31
|
Nadeau JL, Cho YB, Kühn J, Liewer K. Improved Tracking and Resolution of Bacteria in Holographic Microscopy Using Dye and Fluorescent Protein Labeling. Front Chem 2016; 4:17. [PMID: 27242995 PMCID: PMC4874365 DOI: 10.3389/fchem.2016.00017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/31/2016] [Indexed: 11/15/2022] Open
Abstract
Digital holographic microscopy (DHM) is an emerging imaging technique that permits instantaneous capture of a relatively large sample volume. However, large volumes usually come at the expense of lower spatial resolution, and the technique has rarely been used with prokaryotic cells due to their small size and low contrast. In this paper we demonstrate the use of a Mach-Zehnder dual-beam instrument for imaging of labeled and unlabeled bacteria and microalgae. Spatial resolution of 0.3 μm is achieved, providing a sampling of several pixels across a typical prokaryotic cell. Both cellular motility and morphology are readily recorded. The use of dyes provides both amplitude and phase contrast improvement and is of use to identify cells in dense samples.
Collapse
Affiliation(s)
- Jay L Nadeau
- Graduate Aerospace Laboratories, California Institute of TechnologyPasadena, CA, USA; Department of Biomedical Engineering, McGill UniversityMontreal, QC, Canada
| | - Yong Bin Cho
- Graduate Aerospace Laboratories, California Institute of TechnologyPasadena, CA, USA; Department of Biomedical Engineering, McGill UniversityMontreal, QC, Canada
| | - Jonas Kühn
- Graduate Aerospace Laboratories, California Institute of TechnologyPasadena, CA, USA; Institute for Astronomy, ETH ZürichZürich, Switzerland
| | - Kurt Liewer
- Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
32
|
Byeon H, Go T, Lee SJ. Precise measurement of orientations of transparent ellipsoidal particles through digital holographic microscopy. OPTICS EXPRESS 2016; 24:598-610. [PMID: 26832290 DOI: 10.1364/oe.24.000598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A method to measure the orientations of transparent ellipsoidal particles using digital holographic microscopy (DHM) is proposed in this study. This approach includes volumetric recording and numerical reconstruction at different depths. Distinctive light scatterings from an ellipsoid with different angles of orientation are analyzed. A focus function is applied to obtain a reconstructed image that contains a bright line parallel to the major axis of the projected particle, which provides in-plane orientation information. An intensity profile is collected along the major axis of the projected particle in the direction of the optical axis, and this profile is then utilized to measure the out-of-plane orientation of the ellipsoid. After being verified for an ellipsoid with known orientations, the proposed method is applied to ellipsoids suspended in a pipe flow with random orientations. This DHM method can extract the essential information of ellipsoids and therefore has great potential applications in particle dynamics.
Collapse
|
33
|
High-throughput 3D tracking of bacteria on a standard phase contrast microscope. Nat Commun 2015; 6:8776. [PMID: 26522289 PMCID: PMC4659942 DOI: 10.1038/ncomms9776] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/01/2015] [Indexed: 11/29/2022] Open
Abstract
Bacteria employ diverse motility patterns in traversing complex three-dimensional (3D) natural habitats. 2D microscopy misses crucial features of 3D behaviour, but the applicability of existing 3D tracking techniques is constrained by their performance or ease of use. Here we present a simple, broadly applicable, high-throughput 3D bacterial tracking method for use in standard phase contrast microscopy. Bacteria are localized at micron-scale resolution over a range of 350 × 300 × 200 μm by maximizing image cross-correlations between their observed diffraction patterns and a reference library. We demonstrate the applicability of our technique to a range of bacterial species and exploit its high throughput to expose hidden contributions of bacterial individuality to population-level variability in motile behaviour. The simplicity of this powerful new tool for bacterial motility research renders 3D tracking accessible to a wider community and paves the way for investigations of bacterial motility in complex 3D environments. Microscopy techniques used to study the movement of swimming microbes are limited to two dimensions or require sophisticated devices. Here, Taute et al. present a simple method for high-throughput 3D tracking of bacteria using standard phase contrast microscopy.
Collapse
|
34
|
Nadeau JL, Cho YB, Lindensmith CA. Use of dyes to increase phase contrast for biological holographic microscopy. OPTICS LETTERS 2015; 40:4114-4117. [PMID: 26368725 DOI: 10.1364/ol.40.004114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Holographic microscopy is an emerging biological technique that provides amplitude and quantitative phase imaging, though the contrast provided by many cell types and organelles is low, and until now no dyes were known that increased contrast. Here we show that the metallocorrole Ga(tpfc)(SO3)2, which has a strong Soret band absorption, increases contrast in both amplitude and phase and facilitates tracking of Escherichia coli with minimal toxicity. The change in phase contrast may be calculated from the dye-absorbance spectrum using the Kramers-Kronig relations, and represents a general principle that may be applied to any dye or cell type. This enables the use of holographic microscopy for all applications in which specific labeling is desired.
Collapse
|
35
|
Wallace JK, Rider S, Serabyn E, Kühn J, Liewer K, Deming J, Showalter G, Lindensmith C, Nadeau J. Robust, compact implementation of an off-axis digital holographic microscope. OPTICS EXPRESS 2015; 23:17367-17378. [PMID: 26191746 DOI: 10.1364/oe.23.017367] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent advances in digital technologies, such as high-speed computers and large-format digital imagers, have led to a burgeoning interest in the science and engineering of digital holographic microscopy (DHM). Here we report on a novel off-axis DHM, based on a twin-beam optical design, which avoids the limitations of prior systems, and provides many advantages, including compactness, intrinsic stability, robustness against misalignment, ease of use, and cost. These advantages are traded for a physically constrained sample volume, as well as a fixed fringe spacing. The first trade is not overly restrictive for most applications, and the latter provides for a pre-set assembly alignment that optimizes the spatial frequency sampling. Moreover, our new design supports use in both routine laboratory settings as well as extreme environments without any sacrifice in performance, enabling ready observation of microbial species in the field. The instrument design is presented in detail here, along with a demonstration of bacterial video imaging at sub-micrometer resolution at temperatures down to -15 °C.
Collapse
|