1
|
Wang Y, Peng Y, Sun J, Han X, Gao W, Han Q, Zhu L, Dong J, Zhang P. Active Control and Sensing Application of Ultra-Narrowband Circular Dichroism in Multilayer Chiral Nanorod Arrays. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45378-45387. [PMID: 37708439 DOI: 10.1021/acsami.3c07828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Narrowband circular dichroism (CD) has attracted wide attention for its high sensitivity in detecting chiral molecules and catalysis. However, designing a chiral metasurface with excellent sensing performance that can be dynamically tuned still poses challenges. This paper introduces lithium niobate, an electrically tunable material, and a distributed Bragg reflector into chiral nanorod structures to form multilayer chiral nanorod arrays (MCNAs). Simulation results show that MCNAs can generate four strong ultra-narrowband (UNB) CD signals in the visible light spectrum. The UNB CD signal intensity was up to 0.86, and the minimum full width at half-maximum (FWHM) was up to 0.21 nm. The surface electric field and current distribution of MCNAs indicate that the four UNB CD signals mainly originate from the x and y direction Tamm resonances in the chiral nanorod layer. The refractive index of lithium niobate can be tuned by changing the electric field, allowing the active tuning of UNB CD signals. In addition, the sensing performance of MCNAs in the SARS-CoV-2 solution was analyzed, and the figure of merit (FOM) can reach an astonishing 2092. These findings not only assist with the design of UNB chiral devices but also offer new possibilities for the environmental monitoring and ultrasensitive detection of chiral molecules.
Collapse
Affiliation(s)
- Yongkai Wang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Yu Peng
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Jialin Sun
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Xinyu Han
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Wei Gao
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Qingyan Han
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Lipeng Zhu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Jun Dong
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Pin Zhang
- National Key Laboratory on Electromagnetic Environmental Effects and Electro-optical Engineering, Army Engineering University of PLA, Nanjing 210007, China
| |
Collapse
|
2
|
Heylman KD, Knapper KA, Horak EH, Rea MT, Vanga SK, Goldsmith RH. Optical Microresonators for Sensing and Transduction: A Materials Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700037. [PMID: 28627118 DOI: 10.1002/adma.201700037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/01/2017] [Indexed: 05/27/2023]
Abstract
Optical microresonators confine light to a particular microscale trajectory, are exquisitely sensitive to their microenvironment, and offer convenient readout of their optical properties. Taken together, this is an immensely attractive combination that makes optical microresonators highly effective as sensors and transducers. Meanwhile, advances in material science, fabrication techniques, and photonic sensing strategies endow optical microresonators with new functionalities, unique transduction mechanisms, and in some cases, unparalleled sensitivities. In this progress report, the operating principles of these sensors are reviewed, and different methods of signal transduction are evaluated. Examples are shown of how choice of materials must be suited to the analyte, and how innovations in fabrication and sensing are coupled together in a mutually reinforcing cycle. A tremendously broad range of capabilities of microresonator sensors is described, from electric and magnetic field sensing to mechanical sensing, from single-molecule detection to imaging and spectroscopy, from operation at high vacuum to in live cells. Emerging sensing capabilities are highlighted and put into context in the field. Future directions are imagined, where the diverse capabilities laid out are combined and advances in scalability and integration are implemented, leading to the creation of a sensor unparalleled in sensitivity and information content.
Collapse
Affiliation(s)
- Kevin D Heylman
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Kassandra A Knapper
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Erik H Horak
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Morgan T Rea
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Sudheer K Vanga
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| |
Collapse
|
3
|
Choi JH, No YS, So JP, Lee JM, Kim KH, Hwang MS, Kwon SH, Park HG. A high-resolution strain-gauge nanolaser. Nat Commun 2016; 7:11569. [PMID: 27175544 PMCID: PMC4865857 DOI: 10.1038/ncomms11569] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/06/2016] [Indexed: 11/09/2022] Open
Abstract
Interest in mechanical compliance has been motivated by the development of flexible electronics and mechanosensors. In particular, studies and characterization of structural deformation at the fundamental scale can offer opportunities to improve the device sensitivity and spatiotemporal response; however, the development of precise measurement tools with the appropriate resolution remains a challenge. Here we report a flexible and stretchable photonic crystal nanolaser whose spectral and modal behaviours are sensitive to nanoscale structural alterations. Reversible spectral tuning of ∼26 nm in lasing wavelength, with a sub-nanometre resolution of less than ∼0.6 nm, is demonstrated in response to applied strain ranging from -10 to 12%. Instantaneous visualization of the sign of the strain is also characterized by exploring the structural and corresponding modal symmetry. Furthermore, our high-resolution strain-gauge nanolaser functions as a stable and deterministic strain-based pH sensor in an opto-fluidic system, which may be useful for further analysis of chemical/biological systems.
Collapse
Affiliation(s)
- Jae-Hyuck Choi
- Department of Physics, Korea University, Seoul 136-701, Korea
| | - You-Shin No
- Department of Physics, Korea University, Seoul 136-701, Korea
| | - Jae-Pil So
- Department of Physics, Korea University, Seoul 136-701, Korea
| | - Jung Min Lee
- Department of Physics, Korea University, Seoul 136-701, Korea
| | - Kyoung-Ho Kim
- Department of Physics, Korea University, Seoul 136-701, Korea
| | - Min-Soo Hwang
- Department of Physics, Korea University, Seoul 136-701, Korea
| | - Soon-Hong Kwon
- Department of Physics, Chung-Ang University, Seoul 156-756, Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul 136-701, Korea
| |
Collapse
|
4
|
Shen Z, Dong CH, Chen Y, Xiao YF, Sun FW, Guo GC. Compensation of the Kerr effect for transient optomechanically induced transparency in a silica microsphere. OPTICS LETTERS 2016; 41:1249-1252. [PMID: 26977681 DOI: 10.1364/ol.41.001249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have studied the Kerr effect in silica microspheres and demonstrated compensation of the Kerr effect for transient optomechanically induced transparency (OMIT). Due to the Kerr effect of the temporal strong driving pulse, an asymmetric transparency dip is observed during the transient OMIT experiment when the laser frequency is locked at one mechanical frequency, ω(m), below the whispering gallery mode resonance using a weak locking pulse. For compensation of the Kerr effect, we lock the laser at a lower frequency and show the symmetric transparency window. These results are important for studying photon-phonon interconversion, especially in systems with strong driving power.
Collapse
|
5
|
Label-free, single molecule resonant cavity detection: a double-blind experimental study. SENSORS 2015; 15:6324-41. [PMID: 25785307 PMCID: PMC4435135 DOI: 10.3390/s150306324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 01/04/2023]
Abstract
Optical resonant cavity sensors are gaining increasing interest as a potential diagnostic method for a range of applications, including medical prognostics and environmental monitoring. However, the majority of detection demonstrations to date have involved identifying a “known” analyte, and the more rigorous double-blind experiment, in which the experimenter must identify unknown solutions, has yet to be performed. This scenario is more representative of a real-world situation. Therefore, before these devices can truly transition, it is necessary to demonstrate this level of robustness. By combining a recently developed surface chemistry with integrated silica optical sensors, we have performed a double-blind experiment to identify four unknown solutions. The four unknown solutions represented a subset or complete set of four known solutions; as such, there were 256 possible combinations. Based on the single molecule detection signal, we correctly identified all solutions. In addition, as part of this work, we developed noise reduction algorithms.
Collapse
|