1
|
Huang Y, Gu S, Zeng Y, Shen Z, Zhou P, Li N. Numerical investigation of photonic microwave generation in an optically pumped spin-VCSEL subject to optical feedback. OPTICS EXPRESS 2023; 31:9827-9840. [PMID: 37157545 DOI: 10.1364/oe.483352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Photonic microwave generation based on period-one (P1) dynamics of an optically pumped spin-polarized vertical-cavity surface-emitting laser (spin-VCSEL) is investigated numerically. Here, the frequency tunability of the photonic microwave generated from a free-running spin-VCSEL is demonstrated. The results show that the frequency of the photonic microwave signals can be widely tuned (from several gigahertz to hundreds of gigahertz) by changing the birefringence. Furthermore, the frequency of the photonic microwave can be modestly adjusted by introducing an axial magnetic field, although it degrades the microwave linewidth in the edge of Hopf bifurcation. To improve the quality of the photonic microwave, an optical feedback technique is employed in a spin-VCSEL. Under the scenario of single-loop feedback, the microwave linewidth is decreased by enhancing the feedback strength and/or delay time, whereas the phase noise oscillation increases with the increase of the feedback delay time. By adding the dual-loop feedback, the Vernier effect can effectively suppress the side peaks around the central frequency of P1, and simultaneously supports P1 linewidth narrowing and phase noise minimization at long times.
Collapse
|
2
|
Biegańska D, Pieczarka M, Estrecho E, Steger M, Snoke DW, West K, Pfeiffer LN, Syperek M, Truscott AG, Ostrovskaya EA. Collective Excitations of Exciton-Polariton Condensates in a Synthetic Gauge Field. PHYSICAL REVIEW LETTERS 2021; 127:185301. [PMID: 34767383 DOI: 10.1103/physrevlett.127.185301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Collective (elementary) excitations of quantum bosonic condensates, including condensates of exciton polaritons in semiconductor microcavities, are a sensitive probe of interparticle interactions. In anisotropic microcavities with momentum-dependent transverse-electric-transverse-magnetic splitting of the optical modes, the excitations' dispersions are predicted to be strongly anisotropic, which is a consequence of the synthetic magnetic gauge field of the cavity, as well as the interplay between different interaction strengths for polaritons in the singlet and triplet spin configurations. Here, by directly measuring the dispersion of the collective excitations in a high-density optically trapped exciton-polariton condensate, we observe excellent agreement with the theoretical predictions for spinor polariton excitations. We extract the interaction constants for polaritons of the same and opposite spin and map out the characteristic spin textures in an interacting spinor condensate of exciton polaritons.
Collapse
Affiliation(s)
- D Biegańska
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - M Pieczarka
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - E Estrecho
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - M Steger
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - D W Snoke
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - K West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Syperek
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - A G Truscott
- Laser Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - E A Ostrovskaya
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
4
|
Alouini M, Frougier J, Joly A, Baili G, Dolfi D, George JM. VSPIN: a new model relying on the vectorial description of the laser field for predicting the polarization dynamics of spin-injected V(e)CSELs. OPTICS EXPRESS 2018; 26:6739-6757. [PMID: 29609363 DOI: 10.1364/oe.26.006739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
A new vectorial model (VSPIN) based on the Jones formalism is proposed to describe the polarization dynamics of spin injected V(e)CSELs. This general modelling framework accounts for spin injection effects as a gain circular dichroism in the active medium and provides guidelines for developing functional spin-controlled lasers. We investigate the detrimental role of phase anisotropy on polarization switching and show that it can be overcome by preparing the laser cavity to achieve efficient polarization switching under low effective spin injection. The VSPIN model predictions have been confirmed experimentally and explain the polarization behavior of spin-VCSELs reported in the literature.
Collapse
|
5
|
Joly A, Baili G, Alouini M, George JM, Sagnes I, Pillet G, Dolfi D. Compensation of the residual linear anisotropy of phase in a vertical-external-cavity-surface-emitting laser for spin injection. OPTICS LETTERS 2017; 42:651-654. [PMID: 28146550 DOI: 10.1364/ol.42.000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on the compensation of the linear anisotropy of phase in a vertical-external-cavity surface-emitting laser from 21 to 0.5 mrad with an intracavity PLZT electro-optical ceramic. It allows dynamic and accurate control of the laser linear anisotropy, as well as dynamic control of the laser polarization eigenstates. At the birefringence compensation point, we observe an elliptical polarization state with 41° of ellipticity, rotated from its initial position of 32°. The experimental observations are in close agreement with the theoretical predictions. Finally, we are able to demonstrate control of the polarization state with spin injection.
Collapse
|