1
|
Abed J, Rajput NS, Moutaouakil AE, Jouiad M. Recent Advances in the Design of Plasmonic Au/TiO 2 Nanostructures for Enhanced Photocatalytic Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2260. [PMID: 33203122 PMCID: PMC7697928 DOI: 10.3390/nano10112260] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023]
Abstract
Plasmonic nanostructures have played a key role in extending the activity of photocatalysts to the visible light spectrum, preventing the electron-hole combination and providing with hot electrons to the photocatalysts, a crucial step towards efficient broadband photocatalysis. One plasmonic photocatalyst, Au/TiO2, is of a particular interest because it combines chemical stability, suitable electronic structure, and photoactivity for a wide range of catalytic reactions such as water splitting. In this review, we describe key mechanisms involving plasmonics to enhance photocatalytic properties leading to efficient water splitting such as production and transport of hot electrons through advanced analytical techniques used to probe the photoactivity of plasmonics in engineered Au/TiO2 devices. This work also discusses the emerging strategies to better design plasmonic photocatalysts and understand the underlying mechanisms behind the enhanced photoactivity of plasmon-assisted catalysts.
Collapse
Affiliation(s)
- Jehad Abed
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
| | - Nitul S Rajput
- Department of Mechanical Engineering, Masdar Institute part of Khalifa University of Science and Technology, Abu Dhabi 54224, UAE;
| | | | - Mustapha Jouiad
- Laboratory of Physics of Condensed Mater, University of Picardie Jules Verne, 80039 Amiens, France
| |
Collapse
|
2
|
Haddadnezhad M, Yoo S, Kim J, Kim JM, Son J, Jeong HS, Park D, Nam JM, Park S. Synthesis and Surface Plasmonic Characterization of Asymmetric Au Split Nanorings. NANO LETTERS 2020; 20:7774-7782. [PMID: 32914988 DOI: 10.1021/acs.nanolett.0c03385] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this Letter, a rational and stepwise method for the solution-phase synthesis of asymmetric Au split nanorings by adopting Au nanoprisms as a template has been demonstrated. The selective chemical etching of Au nanoprism tips activated the surface reactivity of edges and led to the selective deposition of Pt at the periphery of Au nanoplates. By controlling the total amount of Pt on the edges, different degrees of split Au@Pt nanorings were obtained; the subsequent Au coating around the Au@Pt scaffold eventually resulted in asymmetric Au hexagonal split nanorings. Their surface plasmonic features as a function of split degrees were investigated, including straight nanorods, bent nanorods, split nanorings, and full nanorings. The electrical field focusing using single-particle surface-enhanced Raman spectroscopy was evaluated under different polarization angles of the incident light for two different structures with the point gap and line gap between two arms.
Collapse
Affiliation(s)
| | - Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Hyeon Seok Jeong
- Department of Applied Optics and Physics, Hallym University, Chuncheon 24252, South Korea
| | - Doojae Park
- Department of Applied Optics and Physics, Hallym University, Chuncheon 24252, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| |
Collapse
|
3
|
Horák M, Šikola T. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. Ultramicroscopy 2020; 216:113044. [PMID: 32535410 DOI: 10.1016/j.ultramic.2020.113044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
Scanning transmission electron microscopy (STEM) combined with electron energy loss spectroscopy (EELS) has become a standard technique to map localized surface plasmon resonances with a nanometer spatial and a sufficient energy resolution over the last 15 years. However, no experimental work discussing the influence of experimental conditions during the measurement has been published up to now. We present an experimental study of the influence of the primary beam energy and the collection semi-angle on the plasmon resonances measurement by STEM-EELS. To explore the influence of these two experimental parameters we study a series of gold rods and gold bow-tie and diabolo antennas. We discuss the impact on experimental characteristics which are important for successful detection of the plasmon peak in EELS, namely: the intensity of plasmonic signal, the signal to background ratio, and the signal to zero-loss peak ratio. We found that the primary beam energy should be high enough to suppress the scattering in the sample and at the same time should be low enough to avoid the appearance of relativistic effects. Consequently, the best results are obtained using a medium primary beam energy, in our case 120 keV, and an arbitrary collection semi-angle, as it is not a critical parameter at this primary beam energy. Our instructive overview will help microscopists in the field of plasmonics to arrange their experiments.
Collapse
Affiliation(s)
- Michal Horák
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic.
| | - Tomáš Šikola
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic; Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno 616 69, Czech Republic
| |
Collapse
|
4
|
Horák M, Křápek V, Hrtoň M, Konečná A, Ligmajer F, Stöger-Pollach M, Šamořil T, Paták A, Édes Z, Metelka O, Babocký J, Šikola T. Limits of Babinet's principle for solid and hollow plasmonic antennas. Sci Rep 2019; 9:4004. [PMID: 30850673 PMCID: PMC6408474 DOI: 10.1038/s41598-019-40500-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
We present an experimental and theoretical study of Babinet’s principle of complementarity in plasmonics. We have used spatially-resolved electron energy loss spectroscopy and cathodoluminescence to investigate electromagnetic response of elementary plasmonic antenna: gold discs and complementary disc-shaped apertures in a gold layer. We have also calculated their response to the plane wave illumination. While the qualitative validity of Babinet’s principle has been confirmed, quantitative differences have been found related to the energy and quality factor of the resonances and the magnitude of related near fields. In particular, apertures were found to exhibit stronger interaction with the electron beam than solid antennas, which makes them a remarkable alternative of the usual plasmonic-antennas design. We also examine the possibility of magnetic near field imaging based on the Babinet’s principle.
Collapse
Affiliation(s)
- M Horák
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic
| | - V Křápek
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic. .,Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic.
| | - M Hrtoň
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic
| | - A Konečná
- Materials Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, San Sebastián, Spain
| | - F Ligmajer
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic.,Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - M Stöger-Pollach
- University Service Centre for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstraße 8-10, 1040, Wien, Austria
| | - T Šamořil
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic.,Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - A Paták
- Institute of Scientific Instruments, Czech Academy of Sciences, Královopolská 147, 612 00, Brno, Czech Republic
| | - Z Édes
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic.,Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - O Metelka
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - J Babocký
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic.,Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - T Šikola
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic.,Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| |
Collapse
|
5
|
Horák M, Bukvišová K, Švarc V, Jaskowiec J, Křápek V, Šikola T. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci Rep 2018; 8:9640. [PMID: 29941880 PMCID: PMC6018609 DOI: 10.1038/s41598-018-28037-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/14/2018] [Indexed: 11/09/2022] Open
Abstract
We present a comparative study of plasmonic antennas fabricated by electron beam lithography and direct focused ion beam milling. We have investigated optical and structural properties and chemical composition of gold disc-shaped plasmonic antennas on a silicon nitride membrane fabricated by both methods to identify their advantages and disadvantages. Plasmonic antennas were characterized using transmission electron microscopy including electron energy loss spectroscopy and energy dispersive X-ray spectroscopy, and atomic force microscopy. We have found stronger plasmonic response with better field confinement in the antennas fabricated by electron beam lithography, which is attributed to their better structural quality, homogeneous thickness, and only moderate contamination mostly of organic nature. Plasmonic antennas fabricated by focused ion beam lithography feature weaker plasmonic response, lower structural quality with pronounced thickness fluctuations, and strong contamination, both organic and inorganic, including implanted ions from the focused beam. While both techniques are suitable for the fabrication of plasmonic antennas, electron beam lithography shall be prioritized over focused ion beam lithography due to better quality and performance of its products.
Collapse
Affiliation(s)
- Michal Horák
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic.
| | - Kristýna Bukvišová
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - Vojtěch Švarc
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic.,Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - Jiří Jaskowiec
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - Vlastimil Křápek
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic.,Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - Tomáš Šikola
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic.,Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| |
Collapse
|
6
|
Rajput NS, Shao-Horn Y, Li XH, Kim SG, Jouiad M. Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device. Phys Chem Chem Phys 2018; 19:16989-16999. [PMID: 28597895 DOI: 10.1039/c7cp03212a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photocatalytic nanostructures loaded with metallic nanoparticles are being considered as a potential candidate for designing efficient water splitting devices. Here, we aim to unveil the plasmonic behavior of a device made of Au-TiO2 nanostructures through in-depth investigations combining electron energy loss spectroscopy (EELS) and cathodoluminescence (CL). The experiments confirm the existence of Au bulk plasmon excitation, intrinsic interband transitions, and plasmon losses over a wide range of energies (0.6-2.4 eV). Depending on the size and the shape of the obtained nanostructures, such as fishing hook (FH), asymmetric nanorod (AR), and a/symmetric nanoparticles, in our devices, the dephasing times and the quality factors of the modes vary. Finite difference time domain simulations were then carried out on FH and AR structures. These simulations indicate good agreement between the electric field enhancement and the obtained plasmon excitation as observed in EELS. Moreover, the plasmonic activity obtained by CL and EELS was correlated with the photocurrent measurements recorded with the device, which confirmed that the localized plasmons in Au generate hot electrons and enhance the photoresponse of the device. This study confirms the functionality of the metal dielectric photocatalyst device over a wide range of wavelengths ranging from UV to near IR.
Collapse
Affiliation(s)
- Nitul S Rajput
- Materials Science and Engineering, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates.
| | | | | | | | | |
Collapse
|