Pan M, Liu A, Liu Z, Zhou W. High-speed tunable optical absorber based on a coupled photonic crystal slab and monolayer graphene structure.
OPTICS EXPRESS 2022;
30:47612-47624. [PMID:
36558686 DOI:
10.1364/oe.476763]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Reconfigurable metasurfaces have been pursued intensively in recent years for the ability to modulate the light after fabrication. However, the optical performances of these devices are limited by the efficiency, actuation response speed and mechanical control for reconfigurability. In this paper, we propose a fast tunable optical absorber based on the critical coupling of resonance mode to absorptive medium and the plasma dispersion effect of free carriers in semiconductor. The tunable absorber structure includes a single-layer or bi-layer silicon photonic crystal slab (PCS) to induce a high-Q optical resonance, a monolayer graphene as the absorption material, and bottom reflector to remove transmission. By modulating the refractive index of PCS via the plasma dispersion of the free carrier, the critical coupling condition is shifted in spectrum, and the device acquires tuning capability between perfect absorption and total reflection of the incident monochromatic light beam. Simulation results show that, with silicon index change of 0.015, the tunable absorption of light can achieve the reflection/absorption switching, and full range of reflection phase control is feasible in the over coupling region. The proposed reconfigurable structure has potential applications in remote sensing, free-space communications, LiDAR, and imaging.
Collapse