Silicon Optical Modulator Using a Low-Loss Phase Shifter Based on a Multimode Interference Waveguide.
MICROMACHINES 2019;
10:mi10070482. [PMID:
31323731 PMCID:
PMC6680442 DOI:
10.3390/mi10070482]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/02/2022]
Abstract
We have developed a novel phase modulator, based on fin-type electrodes placed at self-imaging positions of a silicon multimode interference (MMI) waveguide, which allows reduced scattering losses and relaxes the fabrication tolerance. The measured propagation losses and spectral bandwidth are 0.7 dB and 33 nm, respectively, on a 987 μm-long phase shifter. Owing to the self-imaging effect in the MMI waveguide, the wave-front expansion to the electrode was counteracted, and therefore, the scattering loss caused by electrode fins was successfully mitigated. As a proof-of-concept for the MMI-based phase modulator applications, we performed optical modulation based on Mach–Zehnder interferometers (MZIs). The π shift current of the modulator was 1.5 mA.
Collapse