Zhu J, Li X, Tang H, Zhu K. Propagation of multi-cosine-Laguerre-Gaussian correlated Schell-model beams in free space and atmospheric turbulence.
OPTICS EXPRESS 2017;
25:20071-20086. [PMID:
29041692 DOI:
10.1364/oe.25.020071]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
We introduce a class of random stationary, scalar source named as multi-cosine-Laguerre-Gaussian-correlated Schell-model (McLGCSM) source whose spectral degree of coherence (SDOC) is a combination of the Laguerre-Gaussian correlated Schell-model (LGCSM) and multi-cosine-Gaussian correlated Schell-model (McGCSM) sources. The analytical expressions for the spectral density function and the propagation factor of a McLGCSM beam propagating in turbulent atmosphere are derived. The statistical properties, such as the spectral intensity and the propagation factor, of a McLGCSM beam are illustrated numerically. It is shown that a McLGCSM beam exhibits a robust ring-shaped beam array with adjustable number and positions in the far field by directly modulating the spatial structure of its SDOC in the source plane. Moreover, we provide a detailed insight into the theoretical origin and characteristics of such a ring-shaped beam array. It is demonstrated that these peculiar shaping properties are the concentrated manifestation of the individual merits respectively associated with the Laguerre- and multi-cosine-related factors of the whole SDOC. Our results provide a novel scheme to generate robust and controllable ring-shaped beam arrays over large distances, and will widen the potentials for manipulation of multiple particles, free-space optical communications and imaging in the atmosphere.
Collapse