1
|
Optical Whispering-Gallery-Mode Microbubble Sensors. MICROMACHINES 2022; 13:mi13040592. [PMID: 35457896 PMCID: PMC9026417 DOI: 10.3390/mi13040592] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023]
Abstract
Whispering-gallery-mode (WGM) microbubble resonators are ideal optical sensors due to their high quality factor, small mode volume, high optical energy density, and geometry/design/structure (i.e., hollow microfluidic channels). When used in combination with microfluidic technologies, WGM microbubble resonators can be applied in chemical and biological sensing due to strong light–matter interactions. The detection of ultra-low concentrations over a large dynamic range is possible due to their high sensitivity, which has significance for environmental monitoring and applications in life-science. Furthermore, WGM microbubble resonators have also been widely used for physical sensing, such as to detect changes in temperature, stress, pressure, flow rate, magnetic field and ultrasound. In this article, we systematically review and summarize the sensing mechanisms, fabrication and packing methods, and various applications of optofluidic WGM microbubble resonators. The challenges of rapid production and practical applications of WGM microbubble resonators are also discussed.
Collapse
|
2
|
Choi G, Gin A, Su J. Optical frequency combs in aqueous and air environments at visible to near-IR wavelengths. OPTICS EXPRESS 2022; 30:8690-8699. [PMID: 35299315 PMCID: PMC8970704 DOI: 10.1364/oe.451631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 05/24/2023]
Abstract
The ability to detect and identify molecules at high sensitivity without the use of labels or capture agents is important for medical diagnostics, threat identification, environmental monitoring, and basic science. Microtoroid optical resonators, when combined with noise reduction techniques, have been shown capable of label-free single molecule detection; however, they still require a capture agent and prior knowledge of the target molecule. Optical frequency combs can potentially provide high precision spectroscopic information on molecules within the evanescent field of the microresonator; however, this has not yet been demonstrated in air or aqueous biological sensing. For aqueous solutions in particular, impediments include coupling and thermal instabilities, reduced Q factor, and changes to the mode spectrum. Here we overcome a key challenge toward single-molecule spectroscopy using optical microresonators: the generation of a frequency comb at visible to near-IR wavelengths when immersed in either air or aqueous solution. The required dispersion is achieved via intermodal coupling, which we show is attainable using larger microtoroids, but with the same shape and material that has previously been shown ideal for ultra-high sensitivity biosensing. We believe that the continuous evolution of this platform will allow us in the future to simultaneously detect and identify single molecules in both gas and liquid at any wavelength without the use of labels.
Collapse
Affiliation(s)
- Gwangho Choi
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Adley Gin
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Judith Su
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
3
|
Yu J, Zhang J, Wang R, Li A, Zhang M, Wang S, Wang P, Ward JM, Nic Chormaic S. A tellurite glass optical microbubble resonator. OPTICS EXPRESS 2020; 28:32858-32868. [PMID: 33114961 DOI: 10.1364/oe.406256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
We present a method for making microbubble whispering gallery resonators (WGRs) from tellurite, which is a soft glass, using a CO2 laser. The customized fabrication process permits us to process glasses with low melting points into microbubbles with loaded quality factors as high as 2.3 × 106. The advantage of soft glasses is that they provide a wide range of refractive index, thermo-optical, and optomechanical properties. The temperature and air pressure dependent optical characteristics of both passive and active tellurite microbubbles are investigated. For passive tellurite microbubbles, the measured temperature and air pressure sensitivities are 4.9 GHz/K and 7.1 GHz/bar, respectively. The large thermal tuning rate is due to the large thermal expansion coefficient of 1.9 × 10-5 K-1 of the tellurite microbubble. In the active Yb3+-Er3+ co-doped tellurite microbubbles, C-band single-mode lasing with a threshold of 1.66 mW is observed with a 980 nm pump and a maximum wavelength tuning range of 1.53 nm is obtained. The sensitivity of the laser output frequency to pressure changes is 6.5 GHz/bar. The microbubbles fabricated using this method have a low eccentricity and uniform wall thickness, as determined from electron microscope images and the optical spectra. The compound glass microbubbles described herein have the potential for a wide range of applications, including sensing, nonlinear optics, tunable microcavity lasers, and integrated photonics.
Collapse
|
4
|
Numerical Simulation of Mid-Infrared Optical Frequency Comb Generation in Chalcogenide As2S3 Microbubble Resonators. PHOTONICS 2019. [DOI: 10.3390/photonics6020055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mid-infrared optical frequency comb generation in whispering gallery mode microresonators attracts significant interest. Chalcogenide glass microresonators are good candidates for operating in the mid-infrared range. We present the first theoretical analysis of optical frequency comb generation in As2S3 microbubble resonators in the 3–4 μm range. The regime of dissipative soliton plus dispersive wave generation is simulated numerically in the frame of the Lugiato–Lefever equation. Using microbubble geometry allows controlling of the zero-dispersion wavelength and the obtaining of anomalous dispersion needed for soliton generation at the pump wavelength of 3.5 μm, whereas the zero-dispersion wavelength of the analyzed As2S3 glass is ~4.8 μm. It is shown that, for the optimized characteristics of microbubble resonators, optical frequency combs with a spectral width of more than 700 nm (at the level of −30 dB) can be obtained with the low pump power of 10 mW.
Collapse
|
5
|
Ke C, Ma J, Huang Y, Zeng Z, Xu C, Qin J. Theoretical and experimental investigation of broadband dispersion tailoring of high-order mode in the hybrid microsphere cavity. APPLIED OPTICS 2019; 58:1522-1529. [PMID: 30874042 DOI: 10.1364/ao.58.001522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The large normal dispersion of the fundamental mode (TEn=1 mode) in the whispering gallery modes (WGM) microsphere is detrimental to the visible comb generation. Herein, we demonstrate that this fundamental limitation can be removed by considering the high-order radial modes (TEn=2 mode) of the hybrid microsphere cavity (HMC). The studied HMC consists of a high-refractive-index coating (TiO2 or HfO2) and silica microsphere. The simulated electric field energy distribution and measured Q value in our experiment show that optical confinement of the coating effectively excites the TEn=2 mode and reduces the free spectral range (FSR) and modal dispersion. In addition, the observed redshift of WGM and decreased trend of FSR are in accordance with simulations. The zero-dispersion wavelength can be linearly shifted to a shorter wavelength or even into the visible region with the reduction of coating thickness or refractive index and larger microcavity, which advances the visible comb generation.
Collapse
|
6
|
Jin X, Wang J, Wang M, Dong Y, Li F, Wang K. Dispersion engineering of a microsphere via multi-layer coating. APPLIED OPTICS 2017; 56:8023-8028. [PMID: 29047792 DOI: 10.1364/ao.56.008023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Controlling dispersion of a whispering gallery mode resonator is of critical importance for many nonlinear applications, such as frequency comb generation, parametric oscillators, Raman lasers, stimulated Brillouin lasers, and ultrafast optics. Here, we show by numerical and theoretical modeling that dispersion can be strongly engineered in a three-layer-coated microsphere of high, low, and high refractive indices (RIs). We investigate the impact of the coating thickness, the gap between the two high-RI layers, the surrounding medium, and the coating materials on the group-velocity dispersion and discover that the dispersion is controllable over a broad range in both normal and anomalous dispersion regimes. Our approach provides dispersion engineering flexibility in any axisymmetric resonator with a three-layer-coating structure.
Collapse
|
7
|
Yang Y, Jiang X, Kasumie S, Zhao G, Xu L, Ward JM, Yang L, Chormaic SN. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator. OPTICS LETTERS 2016; 41:5266-5269. [PMID: 27842109 DOI: 10.1364/ol.41.005266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this Letter, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO2 laser beam technique. By decreasing the wall thickness of the MBR to 1.4 μm, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical Q-factor of the MBR modes being greater than 107, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.
Collapse
|
8
|
Zhu S, Liu Y, Shi L, Xu X, Yuan S, Liu N, Zhang X. Tunable polarization beam splitter based on optofluidic ring resonator. OPTICS EXPRESS 2016; 24:17511-17521. [PMID: 27464197 DOI: 10.1364/oe.24.017511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An efficient polarization beam splitter (PBS) based on an optofluidic ring resonator (OFRR) is proposed and experimentally demonstrated. The PBS relies on the large effective refractive index difference between transverse-electric (TE) and transverse-magnetic (TM) polarization states, since the silica-microcapillary-based OFRR possesses a slab-like geometry configuration in the cross section through which the circulating light travels. To the best of our knowledge, this is the first OFRR-based PBS. In our work, the maximum polarization splitting ratio of up to 30 dB is achieved. Besides, water and ethanol are pumped into the core of the silica microcapillary respectively, and the maximum wavelength tuning range of 7.02 nm is realized when ethanol flows through the core, verifing the tuning principle of the PBS effectively. With such a good performance and simple scheme, this OFRR-based PBS is promising for applications such as tunable optical filters, demultiplexers, and routers.
Collapse
|