1
|
Lin SE, Jheng DY, Hsu KY, Liu YR, Huang WH, Lee HC, Tsai CC. Rapid pseudo-H&E imaging using a fluorescence-inbuilt optical coherence microscopic imaging system. BIOMEDICAL OPTICS EXPRESS 2021; 12:5139-5158. [PMID: 34513247 PMCID: PMC8407814 DOI: 10.1364/boe.431586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A technique using Linnik-based optical coherence microscopy (OCM), with built-in fluorescence microscopy (FM), is demonstrated here to describe cellular-level morphology for fresh porcine and biobank tissue specimens. The proposed method utilizes color-coding to generate digital pseudo-H&E (p-H&E) images. Using the same camera, colocalized FM images are merged with corresponding morphological OCM images using a 24-bit RGB composition process to generate position-matched p-H&E images. From receipt of dissected fresh tissue piece to generation of stitched images, the total processing time is <15 min for a 1-cm2 specimen, which is on average two times faster than frozen-section H&E process for fatty or water-rich fresh tissue specimens. This technique was successfully used to scan human and animal fresh tissue pieces, demonstrating its applicability for both biobank and veterinary purposes. We provide an in-depth comparison between p-H&E and human frozen-section H&E images acquired from the same metastatic sentinel lymph node slice (∼10 µm thick), and show the differences, like elastic fibers of a tiny blood vessel and cytoplasm of tumor cells. This optical sectioning technique provides histopathologists with a convenient assessment method that outputs large-field H&E-like images of fresh tissue pieces without requiring any physical embedment.
Collapse
Affiliation(s)
- Sey-En Lin
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
- Department of Anatomic Pathology, New Taipei Municipal Tucheng Hospital (Built and operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Dong-Yo Jheng
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| | - Kuang-Yu Hsu
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Chieh Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chien-Chung Tsai
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| |
Collapse
|
2
|
Iyer RR, Žurauskas M, Cui Q, Gao L, Theodore Smith R, Boppart SA. Full-field spectral-domain optical interferometry for snapshot three-dimensional microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:5903-5919. [PMID: 33149995 PMCID: PMC7587259 DOI: 10.1364/boe.402796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 05/08/2023]
Abstract
Prevalent techniques in label-free linear optical microscopy are either confined to imaging in two dimensions or rely on scanning, both of which restrict their applications in imaging subtle biological dynamics. In this paper, we present the theoretical basis along with demonstrations supporting that full-field spectral-domain interferometry can be used for imaging samples in 3D with no moving parts in a single shot. Consequently, we propose a novel optical imaging modality that combines low-coherence interferometry with hyperspectral imaging using a light-emitting diode and an image mapping spectrometer, called Snapshot optical coherence microscopy (OCM). Having first proved the feasibility of Snapshot OCM through theoretical modeling and a comprehensive simulation, we demonstrate an implementation of the technique using off-the-shelf components capable of capturing an entire volume in 5 ms. The performance of Snapshot OCM, when imaging optical targets, shows its capability to axially localize and section images over an axial range of ±10 µm, while maintaining a transverse resolution of 0.8 µm, an axial resolution of 1.4 µm, and a sensitivity of up to 80 dB. Additionally, its performance in imaging weakly scattering live cells shows its capability to not only localize the cells in a densely populated culture but also to generate detailed phase profiles of the structures at each depth for long durations. Consolidating the advantages of several widespread optical microscopy modalities, Snapshot OCM has the potential to be a versatile imaging technique for a broad range of applications.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mantas Žurauskas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qi Cui
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - R. Theodore Smith
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Abstract
Gabor-domain optical coherence microscopy (GDOCM) is a high-definition imaging technique leveraging principles of low-coherence interferometry, liquid lens technology, high-speed imaging, and precision scanning. GDOCM achieves isotropic 2 μm resolution in 3D, effectively breaking the cellular resolution limit of optical coherence tomography (OCT). In the ten years since its introduction, GDOCM has been used for cellular imaging in 3D in a number of clinical applications, including dermatology, oncology and ophthalmology, as well as to characterize materials in industrial applications. Future developments will enhance the structural imaging capability of GDOCM by adding functional modalities, such as fluorescence and elastography, by estimating thicknesses on the nano-scale, and by incorporating machine learning techniques.
Collapse
|
4
|
Differentiating Generic versus Branded Pharmaceutical Tablets Using Ultra-High-Resolution Optical Coherence Tomography. COATINGS 2019. [DOI: 10.3390/coatings9050326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optical coherence tomography (OCT) has recently been demonstrated as a powerful tool to image through pharmaceutical film coatings. Majority of the existing systems can, however, resolve film coatings for thickness greater than 10 µm. Here we report on an ultra-high-resolution (UHR) OCT system, with 1 µm axial and 1.6 µm lateral resolutions, which can resolve thin coatings at approximately 4 µm. We further demonstrate a novel application of the system for differentiating generic and branded suppliers of paracetamol tablets.
Collapse
|
5
|
Ogien J, Dubois A. A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201800208. [PMID: 30062826 DOI: 10.1002/jbio.201800208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/27/2018] [Indexed: 05/06/2023]
Abstract
A compact high-speed full-field optical coherence microscope has been developed for high-resolution in vivo imaging of biological tissues. The interferometer, in the Linnik configuration, has a size of 11 × 11 × 5 cm3 and a weight of 210 g. Full-field illumination with low-coherence light is achieved with a high-brightness broadband light-emitting diode. High-speed full-field detection is achieved by using part of the image sensor of a high-dynamic range CMOS camera. En face tomographic images are acquired at a rate of 50 Hz, with an integration time of 0.9 ms. The image spatial resolution is 0.9 μm × 1.2 μm (axial × transverse), over a field of view of 245 × 245 μm2 . Images of human skin, revealing in-depth cellular-level structures, were obtained in vivo and in real-time without the need for stabilization of the subject. The system can image larger fields, up to 1 × 1 mm2 , but at a reduced depth.
Collapse
Affiliation(s)
- Jonas Ogien
- Laboratoire Charles Fabry, CNRS UMR 8501, Institut d'Optique Graduate School, University of Paris-Saclay, Paris, France
| | - Arnaud Dubois
- Laboratoire Charles Fabry, CNRS UMR 8501, Institut d'Optique Graduate School, University of Paris-Saclay, Paris, France
| |
Collapse
|
6
|
Dubois A. Focus defect and dispersion mismatch in full-field optical coherence microscopy. APPLIED OPTICS 2017; 56:D142-D150. [PMID: 28375370 DOI: 10.1364/ao.56.00d142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Full-field optical coherence microscopy (FFOCM) is an optical technique, based on low-coherence interference microscopy, for tomographic imaging of semi-transparent samples with micrometer-scale spatial resolution. The differences in refractive index between the sample and the immersion medium of the microscope objectives may degrade the FFOCM image quality because of focus defect and optical dispersion mismatch. These phenomena and their consequences are discussed in this theoretical paper. Experimental methods that have been implemented in FFOCM to minimize the adverse effects of these phenomena are summarized and compared.
Collapse
|