1
|
Subedi NR, Stolyar S, Tuson SJ, Marx CJ, Vasdekis AE. Scattered-light-sheet microscopy with sub-cellular resolving power. JOURNAL OF BIOPHOTONICS 2023; 16:e202300068. [PMID: 37287076 DOI: 10.1002/jbio.202300068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Since its first demonstration over 100 years ago, scattering-based light-sheet microscopy has recently re-emerged as a key modality in label-free tissue imaging and cellular morphometry; however, scattering-based light-sheet imaging with subcellular resolution remains an unmet target. This is because related approaches inevitably superimpose speckle or granular intensity modulation on to the native subcellular features. Here, we addressed this challenge by deploying a time-averaged pseudo-thermalized light-sheet illumination. While this approach increased the lateral dimensions of the illumination sheet, we achieved subcellular resolving power after image deconvolution. We validated this approach by imaging cytosolic carbon depots in yeast and bacteria with increased specificity, no staining, and ultralow irradiance levels. Overall, we expect this scattering-based light-sheet microscopy approach will advance single, live cell imaging by conferring low-irradiance and label-free operation towards eradicating phototoxicity.
Collapse
Affiliation(s)
- Nava R Subedi
- Department of Physics, University of Idaho, Moscow, Idaho, USA
| | - Sergey Stolyar
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Sabrina J Tuson
- Department of Physics, University of Idaho, Moscow, Idaho, USA
| | - Christopher J Marx
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | |
Collapse
|
2
|
Peterson T, Mann S, Sun BL, Peng L, Cai H, Liang R. Motionless volumetric structured light sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:2209-2224. [PMID: 37206125 PMCID: PMC10191636 DOI: 10.1364/boe.489280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
To meet the increasing need for low-cost, compact imaging technology with cellular resolution, we have developed a microLED-based structured light sheet microscope for three-dimensional ex vivo and in vivo imaging of biological tissue in multiple modalities. All the illumination structure is generated directly at the microLED panel-which serves as the source-so light sheet scanning and modulation is completely digital, yielding a system that is simpler and less prone to error than previously reported methods. Volumetric images with optical sectioning are thus achieved in an inexpensive, compact form factor without any moving parts. We demonstrate the unique properties and general applicability of our technique by ex vivo imaging of porcine and murine tissue from the gastrointestinal tract, kidney, and brain.
Collapse
Affiliation(s)
- Tyler Peterson
- Wyant College of Optical Sciences,
The University of Arizona, Tucson, Arizona 85721, USA
| | - Shivani Mann
- Department of Neuroscience, The University of Arizona, Tucson, Arizona 85721, USA
| | - Belinda L. Sun
- Department of Pathology, College of Medicine, The University of Arizona, Tucson, Arizona 85721, USA
| | - Leilei Peng
- Wyant College of Optical Sciences,
The University of Arizona, Tucson, Arizona 85721, USA
| | - Haijiang Cai
- Department of Neuroscience, The University of Arizona, Tucson, Arizona 85721, USA
| | - Rongguang Liang
- Wyant College of Optical Sciences,
The University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
3
|
McMillan L, Bruce GD, Dholakia K. Meshless Monte Carlo radiation transfer method for curved geometries using signed distance functions. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210394SSRRR. [PMID: 35927789 PMCID: PMC9350858 DOI: 10.1117/1.jbo.27.8.083003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/20/2022] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Monte Carlo radiation transfer (MCRT) is the gold standard for modeling light transport in turbid media. Typical MCRT models use voxels or meshes to approximate experimental geometry. A voxel-based geometry does not allow for the precise modeling of smooth curved surfaces, such as may be found in biological systems or food and drink packaging. Mesh-based geometry allows arbitrary complex shapes with smooth curved surfaces to be modeled. However, mesh-based models also suffer from issues such as the computational cost of generating meshes and inaccuracies in how meshes handle reflections and refractions. AIM We present our algorithm, which we term signedMCRT (sMCRT), a geometry-based method that uses signed distance functions (SDF) to represent the geometry of the model. SDFs are capable of modeling smooth curved surfaces precisely while also modeling complex geometries. APPROACH We show that using SDFs to represent the problem's geometry is more precise than voxel and mesh-based methods. RESULTS sMCRT is validated against theoretical expressions, and voxel and mesh-based MCRT codes. We show that sMCRT can precisely model arbitrary complex geometries such as microvascular vessel network using SDFs. In comparison with the current state-of-the-art in MCRT methods specifically for curved surfaces, sMCRT is more precise for cases where the geometry can be defined using combinations of shapes. CONCLUSIONS We believe that SDF-based MCRT models are a complementary method to voxel and mesh models in terms of being able to model complex geometries and accurately treat curved surfaces, with a focus on precise simulation of reflections and refractions. sMCRT is publicly available at https://github.com/lewisfish/signedMCRT.
Collapse
Affiliation(s)
- Lewis McMillan
- University of St Andrews, SUPA School of Physics and Astronomy, St Andrews, Scotland
- Address all correspondence to Lewis McMillan,
| | - Graham D. Bruce
- University of St Andrews, SUPA School of Physics and Astronomy, St Andrews, Scotland
| | - Kishan Dholakia
- University of St Andrews, SUPA School of Physics and Astronomy, St Andrews, Scotland
- Yonsei University, College of Science, Department of Physics, Seoul, South Korea
- The University of Adelaide, School of Biological Sciences, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Liu Y, Patko D, Engelhardt I, George TS, Stanley-Wall NR, Ladmiral V, Ameduri B, Daniell TJ, Holden N, MacDonald MP, Dupuy LX. Plant-environment microscopy tracks interactions of Bacillus subtilis with plant roots across the entire rhizosphere. Proc Natl Acad Sci U S A 2021; 118:e2109176118. [PMID: 34819371 PMCID: PMC8640753 DOI: 10.1073/pnas.2109176118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Our understanding of plant-microbe interactions in soil is limited by the difficulty of observing processes at the microscopic scale throughout plants' large volume of influence. Here, we present the development of three-dimensional live microscopy for resolving plant-microbe interactions across the environment of an entire seedling growing in a transparent soil in tailor-made mesocosms, maintaining physical conditions for the culture of both plants and microorganisms. A tailor-made, dual-illumination light sheet system acquired photons scattered from the plant while fluorescence emissions were simultaneously captured from transparent soil particles and labeled microorganisms, allowing the generation of quantitative data on samples ∼3,600 mm3 in size, with as good as 5 µm resolution at a rate of up to one scan every 30 min. The system tracked the movement of Bacillus subtilis populations in the rhizosphere of lettuce plants in real time, revealing previously unseen patterns of activity. Motile bacteria favored small pore spaces over the surface of soil particles, colonizing the root in a pulsatile manner. Migrations appeared to be directed toward the root cap, the point of "first contact," before the subsequent colonization of mature epidermis cells. Our findings show that microscopes dedicated to live environmental studies present an invaluable tool to understand plant-microbe interactions.
Collapse
Affiliation(s)
- Yangminghao Liu
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Daniel Patko
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
| | - Ilonka Engelhardt
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
| | - Timothy S George
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | | | - Vincent Ladmiral
- Institut Charles Gerhardt de Montpellier, Université de Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Bruno Ameduri
- Institut Charles Gerhardt de Montpellier, Université de Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Tim J Daniell
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Nicola Holden
- Northern Faculty, Scotland's Rural College, Aberdeen AB21 9YA, United Kingdom
| | - Michael P MacDonald
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom;
| | - Lionel X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom;
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
5
|
Mitri FG. Unconventional circularly polarized Airy light-sheet spinner tweezers. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:526-533. [PMID: 33798181 DOI: 10.1364/josaa.418743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Standard circularly polarized Airy light-sheets are synthesized by combining two dephased TE and TM wave fields, polarized in the transverse directions of wave propagation, respectively. Somewhat counterintuitively, the present analysis theoretically demonstrates the existence of unconventional circularly polarized Airy light-sheets, where one of the individual dephased wave fields is polarized along the direction of wave propagation. The vector angular spectrum decomposition method in conjunction with the Lorenz gauge condition and Maxwell's equations allow adequate determination of the Cartesian components of the incident radiated electric field components. Subsequently, the Cartesian components of the optical time-averaged radiation force and torque can be determined and computed. The example of a subwavelength light-absorptive (lossy) dielectric sphere is considered based upon the dipole approximation method. The results demonstrate the emergence of negative force components, suggesting retrograde motion and spinning reversal depending on the polarization of the Airy light-sheet and its transverse scale and attenuation parameter. The results are important in the design of light-sheet spinner tweezers and applications involving optical switching and particle manipulation and rotation.
Collapse
|
6
|
Enhanced Light Sheet Elastic Scattering Microscopy by Using a Supercontinuum Laser. Methods Protoc 2019; 2:mps2030057. [PMID: 31284373 PMCID: PMC6789506 DOI: 10.3390/mps2030057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022] Open
Abstract
Light sheet fluorescence microscopy techniques have revolutionized biological microscopy enabling low-phototoxic long-term 3D imaging of living samples. Although there exist many light sheet microscopy (LSM) implementations relying on fluorescence, just a few works have paid attention to the laser elastic scattering source of contrast available in every light sheet microscope. Interestingly, elastic scattering can potentially disclose valuable information from the structure and composition of the sample at different spatial scales. However, when coherent scattered light is detected with a camera sensor, a speckled intensity is generated on top of the native imaged features, compromising their visibility. In this work, we propose a novel light sheet based optical setup which implements three strategies for dealing with speckles of elastic scattering images: (i) polarization filtering; (ii) reducing the temporal coherence of the excitation laser light; and, (iii) reducing the spatial coherence of the light sheet. Finally, we show how these strategies enable pristine light-sheet elastic-scattering imaging of structural features in challenging biological samples avoiding the deleterious effects of speckle, and without relying on, but complementing, fluorescent labelling.
Collapse
|
7
|
Haouas M, Chebbi B, Golub I. Extension of the span and optimization of the optical "magic carpet": generation of a wide quasi-nondiffracting light sheet. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:124-131. [PMID: 30645347 DOI: 10.1364/josaa.36.000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Light sheet illumination is the basis in developing light sheet microscopy (LSM), a technique with significant advantages compared with other classical techniques. Most proposed optical systems to generate light sheets for LSM use many optical elements, which require extensive adjustments and are costly; moreover, they generate a nonuniform or semiuniform light sheet or have a short depth of field (DOF). A simple scheme using a pair of double slits and a cylindrical lens for generating a quasi-nondiffracting 2D light sheet was reported in Opt. Lett.40, 5121 (2015)OPLEDP0146-959210.1364/OL.40.005121. In the present investigation, we elaborate on the optimization of the mask used. As the separation between the two slits increases, the light sheet becomes thinner and the DOF smaller and vice versa. The slits' width does not affect the light sheet thickness, but it does affect the intensity of the side lobes. For convergence angles of the inner slits from 0.75° to 8°, an optimum ratio of the slits' separation/width of 2.182 is recommended. The obtained light sheet is quasi-diffraction-free, namely, while its DOF is comparable with that of a Gaussian beam, its diffraction broadening is substantially smaller. We also add to the previously developed configuration a Powell lens in order to expand the beam in the spanwise direction while keeping nearly constant intensity in this dimension. We perform scalar diffraction theory calculations and conduct measurements showing the nearly constant intensity in the significantly broadened span of the light sheet. Potential applications for the augmented width include imaging of certain large embryos, laser micromachining, and microparticle image velocimetry.
Collapse
|
8
|
Micromechanics of root development in soil. Curr Opin Genet Dev 2018; 51:18-25. [DOI: 10.1016/j.gde.2018.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/04/2018] [Accepted: 03/08/2018] [Indexed: 11/17/2022]
|