1
|
Wu XJ, Song BB, Wu JX, Huang W. Intermodal interference based refractive index sensor employing elliptical core photonic crystal fiber. OPTOELECTRONICS LETTERS 2021; 17:271-275. [DOI: 10.1007/s11801-021-0175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Indexed: 09/01/2023]
|
2
|
Adão RMR, Caño-García M, Maibohm C, Nieder JB. Photonic polymeric structures and electrodynamics simulation method based on a coupled oscillator finite-difference time-domain (O-FDTD) approach. OPTICS EXPRESS 2021; 29:11903-11916. [PMID: 33984962 DOI: 10.1364/oe.414211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
We use femtosecond laser-based two-photon polymerization (TPP) to fabricate a 2.5D micropillar array. Using an angular detection setup, we characterize the structure's scattering properties and compare the results against simulation results obtained from a novel electrodynamics simulation method. The algorithm employs a modified formulation of the Lorentz Oscillator Model and a leapfrog time differentiation to define a 2D coupled Oscillator Finite-Difference Time-Domain (O-FDTD). We validate the model by presenting several simulation examples that cover a wide range of photonic components, such as multi-mode interference splitters, photonic crystals, ring resonators, and Mach-Zehnder interferometers.
Collapse
|
3
|
Nazeri K, Ahmed F, Ahsani V, Joe HE, Bradley C, Toyserkani E, Jun MBG. Hollow-Core Photonic Crystal Fiber Mach-Zehnder Interferometer for Gas Sensing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2807. [PMID: 32429091 PMCID: PMC7284782 DOI: 10.3390/s20102807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 01/24/2023]
Abstract
A novel and compact interferometric refractive index (RI) point sensor is developed using hollow-core photonic crystal fiber (HC-PCF) and experimentally demonstrated for high sensitivity detection and measurement of pure gases. To construct the device, the sensing element fiber (HC-PCF) was placed between two single-mode fibers with airgaps at each side. Great measurement repeatability was shown in the cyclic test for the detection of various gases. The RI sensitivity of 4629 nm/RIU was demonstrated in the RI range of 1.0000347-1.000436 for the sensor with an HC-PCF length of 3.3 mm. The sensitivity of the proposed Mach-Zehnder interferometer (MZI) sensor increases when the length of the sensing element decreases. It is shown that response and recovery times of the proposed sensor inversely change with the length of HC-PCF. Besides, spatial frequency analysis for a wide range of air-gaps revealed information on the number and power distribution of modes. It is shown that the power is mainly carried by two dominant modes in the proposed structure. The proposed sensors have the potential to improve current technology's ability to detect and quantify pure gases.
Collapse
Affiliation(s)
- Kaveh Nazeri
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada; (K.N.); (V.A.); (C.B.)
| | - Farid Ahmed
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Vahid Ahsani
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada; (K.N.); (V.A.); (C.B.)
| | - Hang-Eun Joe
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; (H.-E.J.); (M.B.G.J.)
| | - Colin Bradley
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada; (K.N.); (V.A.); (C.B.)
| | - Ehsan Toyserkani
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Martin B. G. Jun
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; (H.-E.J.); (M.B.G.J.)
| |
Collapse
|
4
|
Gao R, Lu D, Guo D, Xin X. Dual-optofluidic waveguide in-line fiber biosensor for real-time label-free detection of interferon-gamma with temperature compensation. OPTICS EXPRESS 2020; 28:10491-10504. [PMID: 32225632 DOI: 10.1364/oe.389766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Temperature cross-sensitivity is a long-standing challenge for most of the in-line fiber optofluidic waveguide biosensors. In this paper, we propose a dual-optofluidic waveguide antiresonant reflecting optical waveguide (ARROW) biosensor for the detection of interferon-gamma (IFN-γ) concentration with temperature compensation. Two Fabry-Perot resonators infiltrated with IFN-γ and NaCl were formed in a hollow core fiber, which generate two resonance dips based on the ARROW model. The optical biosensor for the detection of interferon-gamma (IFN-γ) has been a key research interest in recent years because IFN-γ is an important early biomarker for many serious human diseases. Based on the dual-optofluidic waveguide ARROW biosensor, the IFN-γ concentration can be measured through the modulation of the resonance condition of the ARROW, while the temperature fluctuation can be eliminated due to same thermo-optic coefficients of two infiltration liquids. The experimental results show that the response of the ARROW biosensor can be amplified significantly with the signal-enhanced streptavidin, and the limit of detection of 0.5 ng/ml can be achieved for the IFN-γ concentration. More importantly, the influence of the temperature could be compensated through the referenced resonance dip. The proposed fiber biosensor has a great potential for the real-time detection of IFN-γ concentrations in the fields of health monitoring, cancer prevention, biological engineering, etc.
Collapse
|
5
|
Hu J, Fu D, Xia C, Long S, Lu C, Sun W, Liu Y. Fiber Mach-Zehnder-interferometer-based liquid crystal biosensor for detecting enzymatic reactions of penicillinase. APPLIED OPTICS 2019; 58:4806-4811. [PMID: 31251304 DOI: 10.1364/ao.58.004806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
A novel, to the best of our knowledge, liquid crystal (LC) biosensor, based on an optical fiber Mach-Zehnder interferometer (MZI), is proposed. The proposed optical fiber MZI consists of two single-mode fibers and a tapered photonic crystal fiber (PCF). The PCF is coated with 4'-pentyl-biphenyl-4-carboxylic acid (PBA)-doped 4-cyano-4'-pentylbiphenyl (5CB). Being a pH-sensitive material, PBA can manipulate LC molecules to different orientations according to their pH values. When the orientation of LC molecules changes with varying pH, the effective refractive index of the cladding modes also is accordingly affected. Enzymatic reactions of penicillinase can release H+, which causes the decrease of the pH. Therefore, the enzymatic reactions of penicillinase can be sensed by monitoring the peak shift in the interference spectrum. The effects of the tapered diameter on the sensitivity of the sensor were experimentally investigated as well.
Collapse
|
6
|
Hybrid Grating in Reduced-Diameter Fiber for Temperature-Calibrated High-Sensitivity Refractive Index Sensing. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9091923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We propose and experimentally demonstrate a hybrid grating, in which an excessively tilted fiber grating (Ex-TFG) and a fiber Bragg grating (FBG) were co-inscribed in a reduced-diameter fiber (RDF). The hybrid grating showed strong resonances due to coupling among core mode and a set of polarization-dependent cladding modes. This coupling showed enhanced evanescent fields by the reduced cladding size, thus allowing stronger interaction with the surrounding medium. Moreover, the FBG’s Bragg resonance confined by the thick cladding was exempt from the change of the surrounding medium’s refractive index (RI), and then the FBG can work as a temperature compensator. As a result, the Ex-TFG in RDF promised a highly sensitive RI measurement, with a sensitivity up to ~1224 nm/RIU near the RI of 1.38. Through simultaneous measurement of temperature and RI, the temperature dependence of water’s RI is then determined. Therefore, the proposed hybrid grating with a spectrum of multi-peaks embedded with a sharp Bragg resonance is a promising alternative for the simultaneous measurement of multi-parameters for many RI-based sensing applications.
Collapse
|
7
|
Pawar D, Kale SN. A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions. Mikrochim Acta 2019; 186:253. [DOI: 10.1007/s00604-019-3351-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/28/2019] [Indexed: 12/23/2022]
|
8
|
Ding L, Li Y, Zhou C, Hu M, Xiong Y, Zeng Z. In-Fiber Mach-Zehnder Interferometer Based on Three-Core Fiber for Measurement of Directional Bending. SENSORS 2019; 19:s19010205. [PMID: 30626036 PMCID: PMC6338931 DOI: 10.3390/s19010205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022]
Abstract
A highly sensitive directional bending sensor based on a three-core fiber (TCF) Mach-Zehnder interferometer (MZI) is presented in this study. This MZI-based bending sensor was fabricated by fusion-splicing a section of TCF between two single-mode fibers (SMF) with core-offset. Due to the location of the core in the TCF, a bend applied to the TCF-based MZI led to an elongation or shortening of the core, which makes the sensor suitable for directional bending measurement. To analyze the bending characteristics, two types of TCF-based sensors, with the fusion-spliced core located at different positions between the SMFs, were investigated. A swept source was employed in the measurement technique. The experimental results showed that, for the two types of sensors in this setup, the bending sensitivities of the two sensors were 15.36 nm/m-1 and 3.11 nm/m-1 at the bending direction of 0°, and -20.48 nm/m-1 and -5.29 nm/m-1 at the bending direction of 180°. The temperature sensitivities of the two sensors were 0.043 nm/°C and 0.041 nm/°C, respectively. The proposed sensors are compact, versatile, inexpensive to fabricate, and are expected to have potential applications in biomedical sensing.
Collapse
Affiliation(s)
- Lei Ding
- Hubei Province Engineering Research Center for Intelligent Micro-Nano Medical Equipment and Key Technologies, School of Electrical and Electronics Engineering, Wuhan Textile University, Wuhan 300020, China.
| | - Yu Li
- Hubei Province Engineering Research Center for Intelligent Micro-Nano Medical Equipment and Key Technologies, School of Electrical and Electronics Engineering, Wuhan Textile University, Wuhan 300020, China.
| | - Cai Zhou
- Hubei Province Engineering Research Center for Intelligent Micro-Nano Medical Equipment and Key Technologies, School of Electrical and Electronics Engineering, Wuhan Textile University, Wuhan 300020, China.
| | - Min Hu
- Hubei Province Engineering Research Center for Intelligent Micro-Nano Medical Equipment and Key Technologies, School of Electrical and Electronics Engineering, Wuhan Textile University, Wuhan 300020, China.
| | - Yuli Xiong
- Hubei Province Engineering Research Center for Intelligent Micro-Nano Medical Equipment and Key Technologies, School of Electrical and Electronics Engineering, Wuhan Textile University, Wuhan 300020, China.
| | - Zhongliang Zeng
- Hubei Province Engineering Research Center for Intelligent Micro-Nano Medical Equipment and Key Technologies, School of Electrical and Electronics Engineering, Wuhan Textile University, Wuhan 300020, China.
| |
Collapse
|
9
|
Zhang NMY, Li K, Zhang N, Zheng Y, Zhang T, Qi M, Shum P, Wei L. Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point. OPTICS EXPRESS 2018; 26:29148-29158. [PMID: 30470081 DOI: 10.1364/oe.26.029148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
In most fiber-optic gas sensing applications where the interested refractive index (RI) is ~1.0, the sensitivities are greatly constrained by the large mismatch between the effective RI of the guided mode and the RI of the surrounding gaseous medium. This fundamental challenge necessitates the development of a promising fiber-optic sensing mechanism with the outstanding RI sensitivity to achieve reliable remote gas sensors. In this work, we report a highly sensitive gas refractometer based on a tapered optical microfiber modal interferometer working at the dispersion turning point (DTP). First, we theoretically analyze the essential conditions to achieve the DTP, the spectral characteristics, and the sensing performance at the DTP. Results show that nonadiabatic tapered optical microfibers with diameters of 1.8-2.4 µm possess the DTPs in the near-infrared range and the RI sensitivities can be improved significantly around the DTPs. Second, we experimentally verify the ultrahigh RI sensitivity around the DTP using a nonadiabatic tapered optical microfiber with a waist diameter of ~2 μm. The experimental observations match well with the simulation results and our proposed gas refractometer provides an exceptional sensitivity as high as -69984.3 ± 2363.3 nm/RIU.
Collapse
|
10
|
González-Vila Á, Ioannou A, Loyez M, Debliquy M, Lahem D, Caucheteur C. Surface plasmon resonance sensing in gaseous media with optical fiber gratings. OPTICS LETTERS 2018; 43:2308-2311. [PMID: 29762579 DOI: 10.1364/ol.43.002308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Surface plasmon resonance excitation with optical fiber gratings has been typically studied in aqueous solutions. This work describes the procedure to excite a plasmon wave in gaseous media and perform refractive index measurements in these environments. Grating photo-inscription with 193 nm excimer laser radiation allows us to obtain slightly tilted fiber Bragg gratings exhibiting a cladding mode resonance comb along several hundreds of nanometers. Their refractive index sensitive range extends from gases to liquids, so operation in both media is compared. We demonstrate that the thickness of the metal coating required for surface plasmon excitation in gases is roughly one third of the one usually used for liquids. The developed platforms exhibit a temperature insensitive response of 78 nm/RIU when tested with different gases.
Collapse
|
11
|
Li K, Zhang N, Zhang NMY, Liu G, Zhang T, Wei L. Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler. OPTICS LETTERS 2018; 43:679-682. [PMID: 29444051 DOI: 10.1364/ol.43.000679] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/10/2018] [Indexed: 06/08/2023]
Abstract
We report an ultrasensitive gas refractive index (RI) sensor based on optical nanofiber couplers (ONCs). Theoretical analysis reveals that a dispersion turning point (DTP) exists when the diameter of the coupler is below 1000 nm. Leveraging this DTP, the gas RI sensitivity can be significantly improved to infinity. Then we experimentally demonstrate a DTP and achieve ultrahigh sensitivities of 46,470 nm/refractive index unit (RIU) and -45,550 nm/RIU around the DTP using an ONC with a diameter of 700 nm. More importantly, the unique twin dips/peaks interference characteristics around the DTP offers further enhancement on the sensitivity to 92,020 nm/RIU. The demonstrated sensor not only shows vast potential in ultrasensitive pressure sensing, acoustic sensing, gas sensing, and gas phase biomarker detection, but also provides a new tool for nonlinear optics, ultrafast optics, quantum optics, and ultracold atom optics.
Collapse
|