1
|
Sanders SE, Zhang M, Javed A, Ogilvie JP. Expanding the bandwidth of fluorescence-detected two-dimensional electronic spectroscopy using a broadband continuum probe pulse pair. OPTICS EXPRESS 2024; 32:8887-8902. [PMID: 38571135 DOI: 10.1364/oe.516963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
We demonstrate fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) with a broadband, continuum probe pulse pair in the pump-probe geometry. The approach combines a pump pulse pair generated by an acousto-optic pulse-shaper with precise control of the relative pump pulse phase and time delay with a broadband, continuum probe pulse pair created using the Translating Wedge-based Identical pulses eNcoding System (TWINS). The continuum probe expands the spectral range of the detection axis and lengthens the waiting times that can be accessed in comparison to implementations of F-2DES using a single pulse-shaper. We employ phase-cycling of the pump pulse pair and take advantage of the separation of signals in the frequency domain to isolate rephasing and non-rephasing signals and optimize the signal-to-noise ratio. As proof of principle, we demonstrate broadband F-2DES on a laser dye and bacteriochlorophyll a.
Collapse
|
2
|
Kefer O, Kolesnichenko PV, Buckup T. Two-dimensional coherent electronic spectrometer with switchable multi-color configurations. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:023003. [PMID: 38416044 DOI: 10.1063/5.0186915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Broadband implementation of two-dimensional electronic spectroscopy (2DES) is a desirable goal for numerous research groups, yet achieving it presents considerable challenges. An effective strategy to mitigate these challenges is the utilization of two-color approaches, effectively broadening the spectral bandwidth accessible with 2DES. Here, we present a simple approach to include multi-color configurations based on adjustable mirror mounts. This enables seamless toggling between single-color, two-color, and transient 2DES within the same spectroscopic apparatus, which is benchmarked on two common laser dyes, Rhodamine 6G and Nile blue. Upon mixing the dyes, single-color 2DES shows overlapping signals, whereas a high selectivity toward Nile blue responses is maintained in two-color and transient 2DES, owing to the fully resonant excitation that is spectrally shifted relative to the detection window. This method is readily implemented in other setups with similar experimental layouts and can be used as a simple solution to overcome existing bandwidth limitations. With the inclusion of transient 2DES, additional insights into excited-state processes can be gained due to its increased sensitivity toward excited-state coherences.
Collapse
Affiliation(s)
- Oskar Kefer
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Pavel V Kolesnichenko
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
3
|
Timmer D, Lünemann DC, Riese S, Sio AD, Lienau C. Full visible range two-dimensional electronic spectroscopy with high time resolution. OPTICS EXPRESS 2024; 32:835-847. [PMID: 38175103 DOI: 10.1364/oe.511906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Two-dimensional electronic spectroscopy (2DES) is a powerful method to study coherent and incoherent interactions and dynamics in complex quantum systems by correlating excitation and detection energies in a nonlinear spectroscopy experiment. Such dynamics can be probed with a time resolution limited only by the duration of the employed laser pulses and in a spectral range defined by the pulse spectrum. In the blue spectral range (<500 nm), the generation of sufficiently broadband ultrashort pulses with pulse durations of 10 fs or less has been challenging so far. Here, we present a 2DES setup based on a hollow-core fiber supercontinuum covering the full visible range (400-700 nm). Pulse compression via custom-made chirped mirrors yields a time resolution of <10 fs. The broad spectral coverage, in particular the extension of the pulse spectra into the blue spectral range, unlocks new possibilities for coherent investigations of blue-light absorbing and multichromophoric compounds, as demonstrated by a 2DES measurement of chlorophyll a.
Collapse
|
4
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
5
|
Mewes L, Ingle RA, Al Haddad A, Chergui M. Broadband visible two-dimensional spectroscopy of molecular dyes. J Chem Phys 2021; 155:034201. [PMID: 34293898 DOI: 10.1063/5.0053554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional Fourier transform spectroscopy is a promising technique to study ultrafast molecular dynamics. Similar to transient absorption spectroscopy, a more complete picture of the dynamics requires broadband laser pulses to observe transient changes over a large enough bandwidth, exceeding the inhomogeneous width of electronic transitions, as well as the separation between the electronic or vibronic transitions of interest. Here, we present visible broadband 2D spectra of a series of dye molecules and report vibrational coherences with frequencies up to ∼1400 cm-1 that were obtained after improvements to our existing two-dimensional Fourier transform setup [Al Haddad et al., Opt. Lett. 40, 312-315 (2015)]. The experiment uses white light from a hollow core fiber, allowing us to acquire 2D spectra with a bandwidth of 200 nm, in a range between 500 and 800 nm, and with a temporal resolution of 10-15 fs. 2D spectra of nile blue, rhodamine 800, terylene diimide, and pinacyanol iodide show vibronic spectral features with at least one vibrational mode and reveal information about structural motion via coherent oscillations of the 2D signals during the population time. For the case of pinacyanol iodide, these observations are complemented by its Raman spectrum, as well as the calculated Raman activity at the ground- and excited-state geometry.
Collapse
Affiliation(s)
- Lars Mewes
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Rebecca A Ingle
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Andre Al Haddad
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Segatta F, Nenov A, Nascimento DR, Govind N, Mukamel S, Garavelli M. iSPECTRON: A simulation interface for linear and nonlinear spectra with ab-initio quantum chemistry software. J Comput Chem 2021; 42:644-659. [PMID: 33556195 DOI: 10.1002/jcc.26485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
We introduce iSPECTRON, a program that parses data from common quantum chemistry software (NWChem, OpenMolcas, Gaussian, Cobramm, etc.), produces the input files for the simulation of linear and nonlinear spectroscopy of molecules with the Spectron code, and analyzes the spectra with a broad range of tools. Vibronic spectra are expressed in term of the electronic eigenstates, obtained from quantum chemistry computations, and vibrational/bath effects are incorporated in the framework of the displaced harmonic oscillator model, where all required quantities are computed at the Franck-Condon point. The program capabilities are illustrated by simulating linear absorption, transient absorption and two dimensional electronic spectra of the pyrene molecule. Calculations at two levels of electronic structure theory, time-dependent density functional theory (with NWChem) and RASSCF/RASPT2 (with OpenMolcas) are presented and compared where possible. The iSPECTRON program is available online at https://github.com/ispectrongit/iSPECTRON/ and distributed open source under the terms of the Educational Community License version 2.0 (ECL 2.0).
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| | - Daniel R Nascimento
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| |
Collapse
|
7
|
Zhu WD, Wang R, Wang XY, Xiao M, Zhang CF. Two-dimensional electronic spectroscopy with active phase Management. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2012222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Wei-da Zhu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiao-yong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States of America
| | - Chun-feng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Wolz L, Heshmatpour C, Perri A, Polli D, Cerullo G, Finley JJ, Thyrhaug E, Hauer J, Stier AV. Time-domain photocurrent spectroscopy based on a common-path birefringent interferometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:123101. [PMID: 33379948 DOI: 10.1063/5.0023543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
We present diffraction-limited photocurrent (PC) microscopy in the visible spectral range based on broadband excitation and an inherently phase-stable common-path interferometer. The excellent path-length stability guarantees high accuracy without the need for active feedback or post-processing of the interferograms. We illustrate the capabilities of the setup by recording PC spectra of a bulk GaAs device and compare the results to optical transmission data.
Collapse
Affiliation(s)
- Lukas Wolz
- Department of Physics, Technical University of Munich, Walter Schottky Institut, 85748 Garching, Germany
| | - Constantin Heshmatpour
- Dynamical Spectroscopy, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Antonio Perri
- IFN-CNR and Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Dario Polli
- IFN-CNR and Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Giulio Cerullo
- IFN-CNR and Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Jonathan J Finley
- Department of Physics, Technical University of Munich, Walter Schottky Institut, 85748 Garching, Germany
| | - Erling Thyrhaug
- Dynamical Spectroscopy, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Jürgen Hauer
- Dynamical Spectroscopy, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Andreas V Stier
- Department of Physics, Technical University of Munich, Walter Schottky Institut, 85748 Garching, Germany
| |
Collapse
|
9
|
Conti I, Cerullo G, Nenov A, Garavelli M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going. J Am Chem Soc 2020; 142:16117-16139. [PMID: 32841559 PMCID: PMC7901644 DOI: 10.1021/jacs.0c04952] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Computational spectroscopy is becoming a mandatory tool for the interpretation of the
complex, and often congested, spectral maps delivered by modern non-linear multi-pulse
techniques. The fields of Electronic Structure Methods,
Non-Adiabatic Molecular Dynamics, and Theoretical
Spectroscopy represent the three pillars of the virtual ultrafast
optical spectrometer, able to deliver transient spectra in
silico from first principles. A successful simulation strategy requires a
synergistic approach that balances between the three fields, each one having its very
own challenges and bottlenecks. The aim of this Perspective is to demonstrate that,
despite these challenges, an impressive agreement between theory and experiment is
achievable now regarding the modeling of ultrafast photoinduced processes in complex
molecular architectures. Beyond that, some key recent developments in the three fields
are presented that we believe will have major impacts on spectroscopic simulations in
the very near future. Potential directions of development, pending challenges, and
rising opportunities are illustrated.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
10
|
Zhou L, Tian L, Zhang WK. Experimental consideration of two-dimensional Fourier transform spectroscopy. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2007125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Lie Tian
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Wen-kai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Maiuri M, Garavelli M, Cerullo G. Ultrafast Spectroscopy: State of the Art and Open Challenges. J Am Chem Soc 2019; 142:3-15. [DOI: 10.1021/jacs.9b10533] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
12
|
Paul J, Stevens CE, Smith RP, Dey P, Mapara V, Semenov D, McGill SA, Kaindl RA, Hilton DJ, Karaiskaj D. Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:063901. [PMID: 31255018 DOI: 10.1063/1.5055891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
We performed nonlinear optical two-dimensional Fourier transform spectroscopy measurements using an optical resistive high-field magnet on GaAs quantum wells. Magnetic fields up to 25 T can be achieved using the split helix resistive magnet. Two-dimensional spectroscopy measurements based on the coherent four-wave mixing signal require phase stability. Therefore, these measurements are difficult to perform in environments prone to mechanical vibrations. Large resistive magnets use extensive quantities of cooling water, which causes mechanical vibrations, making two-dimensional Fourier transform spectroscopy very challenging. Here, we report on the strategies we used to overcome these challenges and maintain the required phase-stability throughout the measurement. A self-contained portable platform was used to set up the experiments within the time frame provided by a user facility. Furthermore, this platform was floated above the optical table in order to isolate it from vibrations originating from the resistive magnet. Finally, we present two-dimensional Fourier transform spectra obtained from GaAs quantum wells at magnetic fields up to 25 T and demonstrate the utility of this technique in providing important details, which are obscured in one dimensional spectroscopy.
Collapse
Affiliation(s)
- Jagannath Paul
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | | | - Ryan P Smith
- Department of Physics, California State University-East Bay, Hayward, California 94542, USA
| | - Prasenjit Dey
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Varun Mapara
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Dimitry Semenov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 30201, USA
| | - Steven A McGill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 30201, USA
| | - Robert A Kaindl
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David J Hilton
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Denis Karaiskaj
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
13
|
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Borrego-Varillas R, Nenov A, Ganzer L, Oriana A, Manzoni C, Tolomelli A, Rivalta I, Mukamel S, Garavelli M, Cerullo G. Two-dimensional UV spectroscopy: a new insight into the structure and dynamics of biomolecules. Chem Sci 2019. [DOI: 10.1039/c9sc03871j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Two-dimensional ultraviolet spectroscopy has the potential to deliver rich structural and dynamical information on biomolecules such as DNA and proteins.
Collapse
Affiliation(s)
| | - A. Nenov
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - L. Ganzer
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - A. Oriana
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - C. Manzoni
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - A. Tolomelli
- Dipartimento di Chimica
- Universitá degli Studi di Bologna
- I-40126 Bologna
- Italy
| | - I. Rivalta
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - S. Mukamel
- Department of Chemistry
- Department of Physics and Astronomy
- University of California
- Irvine
- USA
| | - M. Garavelli
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - G. Cerullo
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| |
Collapse
|
15
|
Agathangelou D, El-Khoury Y, Brazard J, Crégut O, Haacke S, Cerullo G, Léonard J. Towards broadband two-Dimensional electronic spectroscopy with ~8 fs phase-locked pulses at 400 nm. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920503006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a two-dimensional spectroscopy setup based on a pair of near-UV-blue (360 - 430 nm), 8.4-fs, phase-locked, collinear excitation pulses and a nearly collinear UV-Vis supercontinuum probe pulse.
Collapse
|
16
|
Towards Accurate Simulation of Two-Dimensional Electronic Spectroscopy. Top Curr Chem (Cham) 2018; 376:24. [DOI: 10.1007/s41061-018-0201-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/24/2018] [Indexed: 10/14/2022]
|
17
|
Nenov A, Borrego-Varillas R, Oriana A, Ganzer L, Segatta F, Conti I, Segarra-Marti J, Omachi J, Dapor M, Taioli S, Manzoni C, Mukamel S, Cerullo G, Garavelli M. UV-Light-Induced Vibrational Coherences: The Key to Understand Kasha Rule Violation in trans-Azobenzene. J Phys Chem Lett 2018; 9:1534-1541. [PMID: 29504764 DOI: 10.1021/acs.jpclett.8b00152] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We combine sub-20 fs transient absorption spectroscopy with state-of-the-art computations to study the ultrafast photoinduced dynamics of trans-azobenzene (AB). We are able to resolve the lifetime of the ππ* state, whose decay within ca. 50 fs is correlated to the buildup of the nπ* population and to the emergence of coherences in the dynamics, to date unobserved. Nonlinear spectroscopy simulations call for the CNN in-plane bendings as the active modes in the subps photoinduced coherent dynamics out of the ππ* state. Radiative to kinetic energy transfer into these modes drives the system to a high-energy planar nπ*/ground state conical intersection, inaccessible upon direct excitation of the nπ* state, that triggers an ultrafast (0.45 ps) nonproductive decay of the nπ* state and is thus responsible for the observed Kasha rule violation in UV excited trans-AB. On the other hand, cis-AB is built only after intramolecular vibrational energy redistribution and population of the NN torsional mode.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Rocio Borrego-Varillas
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Aurelio Oriana
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Lucia Ganzer
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Francesco Segatta
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN) , 38123 Trento , Italy
| | - Irene Conti
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Javier Segarra-Marti
- Laboratoire de Chimie UMR 5182 , Université Lyon, ENS de Lyon, CNRS, Université Lyon 1 , 46 Allée d'Italie , FR-69342 Lyon , France
| | - Junko Omachi
- Institute for Photon Science and Technology , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Maurizio Dapor
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN) , 38123 Trento , Italy
| | - Simone Taioli
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN) , 38123 Trento , Italy
- Faculty of Mathematics and Physics , Charles University , Praha 8 , 180 00 Prague , Czech Republic
| | - Cristian Manzoni
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Shaul Mukamel
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| |
Collapse
|
18
|
Maiuri M, Brazard J. Electronic Couplings in (Bio-) Chemical Processes. Top Curr Chem (Cham) 2018; 376:10. [DOI: 10.1007/s41061-017-0180-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/01/2017] [Indexed: 11/24/2022]
|
19
|
Oliver TAA. Recent advances in multidimensional ultrafast spectroscopy. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171425. [PMID: 29410844 PMCID: PMC5792921 DOI: 10.1098/rsos.171425] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/20/2017] [Indexed: 05/14/2023]
Abstract
Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.
Collapse
Affiliation(s)
- Thomas A. A. Oliver
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
20
|
Mincigrucci R, Bencivenga F, Principi E, Capotondi F, Foglia L, Naumenko D, Simoncig A, Dal Zilio S, Gessini A, Kurdi G, Mahne N, Manfredda M, Matruglio A, Nikolov I, Pedersoli E, Raimondi L, Sergo R, Zangrando M, Masciovecchio C. Timing methodologies and studies at the FERMI free-electron laser. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:44-51. [PMID: 29271750 DOI: 10.1107/s1600577517016368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Time-resolved investigations have begun a new era of chemistry and physics, enabling the monitoring in real time of the dynamics of chemical reactions and matter. Induced transient optical absorption is a basic ultrafast electronic effect, originated by a partial depletion of the valence band, that can be triggered by exposing insulators and semiconductors to sub-picosecond extreme-ultraviolet pulses. Besides its scientific and fundamental implications, this process is very important as it is routinely applied in free-electron laser (FEL) facilities to achieve the temporal superposition between FEL and optical laser pulses with tens of femtoseconds accuracy. Here, a set of methodologies developed at the FERMI facility based on ultrafast effects in condensed materials and employed to effectively determine the FEL/laser cross correlation are presented.
Collapse
Affiliation(s)
- Riccardo Mincigrucci
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Filippo Bencivenga
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Emiliano Principi
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Flavio Capotondi
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Laura Foglia
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Denys Naumenko
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Alberto Simoncig
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Simone Dal Zilio
- IOM Laboratorio Nazionale TASC, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Alessandro Gessini
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Gabor Kurdi
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Nicola Mahne
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Michele Manfredda
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Alessia Matruglio
- CERIC-ERIC (Central European Research Infrastructure Consortium), Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Ivaylo Nikolov
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Emanuele Pedersoli
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Lorenzo Raimondi
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Rudi Sergo
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Marco Zangrando
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| | - Claudio Masciovecchio
- Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149, Italy
| |
Collapse
|
21
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
22
|
Zhu W, Wang R, Zhang C, Wang G, Liu Y, Zhao W, Dai X, Wang X, Cerullo G, Cundiff S, Xiao M. Broadband two-dimensional electronic spectroscopy in an actively phase stabilized pump-probe configuration. OPTICS EXPRESS 2017; 25:21115-21126. [PMID: 29041519 DOI: 10.1364/oe.25.021115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 05/27/2023]
Abstract
We introduce a novel configuration for two-dimensional electronic spectroscopy (2DES) that combines the partially collinear pump-probe geometry with active phase locking. We demonstrate the method on a solution sample of CdSe/ZnS nanocrystals by employing two non-collinear optical parametric amplifiers as the pump and probe sources. The two collinear pump pulse replicas are created using a Mach-Zehnder interferometer phase stabilized by active feedback electronics. Taking the advantage of separated paths of the two pump pulses in the interferometer, we improve the signal-to-noise ratio with double modulation of the individual pump beams. In addition, a quartz wedge pair manipulates the phase difference between the two pump pulses, enabling the recovery of the rephasing and non-rephasing signals. Our setup integrates many advantages of available 2DES techniques with robust phase stabilization, ultrafast time resolution, two-color operation, long delay scan, individual polarization manipulation and the ease of implementation.
Collapse
|
23
|
Perri A, Preda F, D'Andrea C, Thyrhaug E, Cerullo G, Polli D, Hauer J. Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer. OPTICS EXPRESS 2017; 25:A483-A490. [PMID: 28788879 DOI: 10.1364/oe.25.00a483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The correlation of molecular excitation and emission events provides a powerful multidimensional spectroscopy tool, by relating transitions from electronic ground and excited states through two-dimensional excitation-emission maps. Here we present a compact, fast and versatile Fourier-transform spectrometer, combining absorption and excitation-emission fluorescence spectroscopy in the visible. We generate phase-locked excitation pulse pairs via an inherently stable birefringent wedge-based common-path interferometer, retaining all the advantages of Fourier-transform spectroscopy but avoiding active stabilization or auxiliary tracking beams. We employ both coherent and incoherent excitation sources on dye molecules in solution, with data acquisition times in the range of seconds and minutes, respectively.
Collapse
|
24
|
Kearns NM, Mehlenbacher RD, Jones AC, Zanni MT. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz. OPTICS EXPRESS 2017; 25:7869-7883. [PMID: 28380905 DOI: 10.1364/oe.25.007869] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities <0.1 within a few minutes of averaging and an instrument response time of <46 fs thereby demonstrating that that simple broadband continuum sources, although weak, are sufficient to create high quality 2D spectra with >200 nm bandwidth.
Collapse
|
25
|
Réhault J, Borrego-Varillas R, Oriana A, Manzoni C, Hauri CP, Helbing J, Cerullo G. Fourier transform spectroscopy in the vibrational fingerprint region with a birefringent interferometer. OPTICS EXPRESS 2017; 25:4403-4413. [PMID: 28241643 DOI: 10.1364/oe.25.004403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We introduce a birefringent interferometer for Fourier transform (FT) spectroscopy in the mid-infrared, covering the vibrational fingerprint region (5-10 µm, 1000-2000 cm-1), which is crucial for molecular identification. Our interferometer employs the crystal calomel (Hg2Cl2), which combines high birefringence (ne-no≈0.55) with a broad transparency range (0.38-20 µm). We adopt a design based on birefringent wedges, which is simple and compact and guarantees excellent delay accuracy and long-term stability. We demonstrate FTIR spectroscopy, with a frequency resolution of 3 cm-1, as well as two-dimensional IR (2DIR) spectroscopy. Our setup can be extended to other spectroscopic modalities such as vibrational circular dichroism and step-scan FT spectroscopy.
Collapse
|