A Monolithic Gimbal Micro-Mirror Fabricated and Remotely Tuned with a Femtosecond Laser.
MICROMACHINES 2019;
10:mi10090611. [PMID:
31540118 PMCID:
PMC6780373 DOI:
10.3390/mi10090611]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/17/2022]
Abstract
With the advent of ultrafast lasers, new manufacturing techniques have come into existence. In micromachining, the use of femtosecond lasers not only offers the possibility for three-dimensional monolithic fabrication inside a single optically transparent material, but also a means for remotely, and arbitrarily, deforming substrates with nanometer resolution. Exploiting this principle and combining it with flexure design, we demonstrate a monolithic micro-mirror entirely made with a femtosecond laser and whose orientation is tuned in a non-contact manner by exposing some part of the device to low energy femtosecond pulses. Given the non-contact nature of the process, the alignment can be very precisely controlled with a resolution that is many orders of magnitude better than conventional techniques based on mechanical positioners.
Collapse