Zhu ZH, Li JM, Hao ZQ, Tang SS, Tang Y, Guo LB, Li XY, Zeng XY, Lu YF. Isotopic determination with molecular emission using laser-induced breakdown spectroscopy and laser-induced radical fluorescence.
OPTICS EXPRESS 2019;
27:470-482. [PMID:
30696132 DOI:
10.1364/oe.27.000470]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Molecular emission can be used for isotopic analysis in laser-induced breakdown spectroscopy (LIBS) due to its large isotopic shift. However, spectral weakness and interference have become the main flaws in molecular isotopic analysis, causing deterioration of quantitative accuracy and sensitivity. Here, to overcome these problems, laser-induced radical fluorescence (LIRF) was applied to enhance the molecular spectra and eliminate the spectral interference. The root mean square errors of cross validation (RMSECVs) of boron and carbon isotopes (11BO, 10BO, 12CN, and 13CN) improved to 2.632, 5.721, 5.990, and 1.543 at.%, as compared with 16.96, 35.79, 57.10, and 13.89 at.%, respectively, obtained in the case without LIRF. The limits of detection (LoDs) of 11BO, 10BO, 12CN, and 13CN were 0.9858, 0.8470, 1.606, and 1.193 at.%, respectively. This work demonstrates the feasibility of LIBS-LIRF to achieve isotopic determination with high accuracy and sensitivity.
Collapse