1
|
Liu WB, Lu YS, Fu Y, Huang SC, Yin ZJ, Jiang K, Yin HL, Chen ZB. Source-independent quantum random number generator against tailored detector blinding attacks. OPTICS EXPRESS 2023; 31:11292-11307. [PMID: 37155768 DOI: 10.1364/oe.481832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Randomness, mainly in the form of random numbers, is the fundamental prerequisite for the security of many cryptographic tasks. Quantum randomness can be extracted even if adversaries are fully aware of the protocol and even control the randomness source. However, an adversary can further manipulate the randomness via tailored detector blinding attacks, which are hacking attacks suffered by protocols with trusted detectors. Here, by treating no-click events as valid events, we propose a quantum random number generation protocol that can simultaneously address source vulnerability and ferocious tailored detector blinding attacks. The method can be extended to high-dimensional random number generation. We experimentally demonstrate the ability of our protocol to generate random numbers for two-dimensional measurement with a generation speed of 0.1 bit per pulse.
Collapse
|
3
|
A Review of Security Evaluation of Practical Quantum Key Distribution System. ENTROPY 2022; 24:e24020260. [PMID: 35205554 PMCID: PMC8870823 DOI: 10.3390/e24020260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023]
Abstract
Although the unconditional security of quantum key distribution (QKD) has been widely studied, the imperfections of the practical devices leave potential loopholes for Eve to spy the final key. Thus, how to evaluate the security of QKD with realistic devices is always an interesting and opening question. In this paper, we briefly review the development of quantum hacking and security evaluation technology for a practical decoy state BB84 QKD system. The security requirement and parameters in each module (source, encoder, decoder and detector) are discussed, and the relationship between quantum hacking and security parameter are also shown.
Collapse
|
4
|
Lim K, Choi BS, Baek JH, Kim M, Choe JS, Kim KJ, Ko YH, Youn CJ. Countermeasure for security loophole caused by asymmetric correlations of reference frame independent quantum key distribution with fewer quantum states. OPTICS EXPRESS 2021; 29:18966-18975. [PMID: 34154140 DOI: 10.1364/oe.427055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
One of the challenging issues in free-space quantum key distribution (QKD) is the requirement of active compensation of the reference frame between the transmitter and receiver. Reference frame independent (RFI) QKD removes active compensation, but it requires more quantum states. A recent proposal can effectively reduce the required quantum states, but this can be achieved assuming the correlations defined in RFI QKD are symmetric. In a real QKD system, such symmetric correlations cannot always be satisfied owing to the device imperfections and optical misalignment. We theoretically analyze the effect of asymmetric correlations. Consequently, we report that the asymmetry causes security loopholes and provide a countermeasure to prevent them. Furthermore, we provide the experimental results of a free-space RFI QKD system to verify the countermeasure for the aforementioned problem. In conclusion, our work provides feasibility of the practical RFI QKD system with fewer quantum states by effectively preventing the security loophole.
Collapse
|
5
|
Ruhul Fatin MA, Sajeed S. Generalized efficiency mismatch attack to bypass the detection-scrambling countermeasure. OPTICS EXPRESS 2021; 29:16073-16086. [PMID: 34154178 DOI: 10.1364/oe.419338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/31/2021] [Indexed: 06/13/2023]
Abstract
The ability of an eavesdropper to compromise the security of a quantum communication system by changing the angle of the incoming light is well-known. Randomizing the role of the detectors has been proposed to be an efficient countermeasure to this type of attack. Here we show that the proposed countermeasure can be bypassed if the attack is generalized by including more attack variables. Using the experimental data from existing literature, we show how randomization effectively prevents the initial attack but fails to do so when Eve generalizes her attack strategy. Our result and methodology could be used to scrutinize a free-space quantum communication receiver against detector-efficiency-mismatch type attacks.
Collapse
|
6
|
Sajeed S, Chaiwongkhot P, Huang A, Qin H, Egorov V, Kozubov A, Gaidash A, Chistiakov V, Vasiliev A, Gleim A, Makarov V. An approach for security evaluation and certification of a complete quantum communication system. Sci Rep 2021; 11:5110. [PMID: 33658528 PMCID: PMC7930270 DOI: 10.1038/s41598-021-84139-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/12/2021] [Indexed: 11/18/2022] Open
Abstract
Although quantum communication systems are being deployed on a global scale, their realistic security certification is not yet available. Here we present a security evaluation and improvement protocol for complete quantum communication systems. The protocol subdivides a system by defining seven system implementation sub-layers based on a hierarchical order of information flow; then it categorises the known system implementation imperfections by hardness of protection and practical risk. Next, an initial analysis report lists all potential loopholes in its quantum-optical part. It is followed by interactions with the system manufacturer, testing and patching most loopholes, and re-assessing their status. Our protocol has been applied on multiple commercial quantum key distribution systems to improve their security. A detailed description of our methodology is presented with the example of a subcarrier-wave system. Our protocol is a step towards future security evaluation and security certification standards.
Collapse
Affiliation(s)
- Shihan Sajeed
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada. .,Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada. .,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada. .,Department of Electrical and Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada.
| | - Poompong Chaiwongkhot
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Quantum Technology Foundation (Thailand), Bangkok, 10110, Thailand
| | - Anqi Huang
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Institute for Quantum Information and State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Hao Qin
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,CAS Quantum Network Co., Ltd., 99 Xiupu road, Shanghai, 201315, People's Republic of China
| | - Vladimir Egorov
- Faculty of Photonics and Optical Information, ITMO University, Kadetskaya line 3/2, 199034, St. Petersburg, Russia
| | - Anton Kozubov
- Faculty of Photonics and Optical Information, ITMO University, Kadetskaya line 3/2, 199034, St. Petersburg, Russia
| | - Andrei Gaidash
- Faculty of Photonics and Optical Information, ITMO University, Kadetskaya line 3/2, 199034, St. Petersburg, Russia
| | - Vladimir Chistiakov
- Faculty of Photonics and Optical Information, ITMO University, Kadetskaya line 3/2, 199034, St. Petersburg, Russia
| | - Artur Vasiliev
- Faculty of Photonics and Optical Information, ITMO University, Kadetskaya line 3/2, 199034, St. Petersburg, Russia
| | - Artur Gleim
- Faculty of Photonics and Optical Information, ITMO University, Kadetskaya line 3/2, 199034, St. Petersburg, Russia
| | - Vadim Makarov
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Shanghai Branch, National Laboratory for Physical Sciences at Microscale and CAS Center for Excellence in Quantum Information, University of Science and Technology of China, Shanghai, 201315, People's Republic of China
| |
Collapse
|