1
|
Wang J, Niu Y, Zhao Q, Shang Y, Wang Y. Multitasking Integrated Metasurface for Electromagnetic Wave Modulation with Reflection, Transmission, and Absorption. MICROMACHINES 2024; 15:965. [PMID: 39203616 PMCID: PMC11356764 DOI: 10.3390/mi15080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024]
Abstract
Accommodating multiple tasks within a tiny metasurface unit cell without them interfering with each other is a significant challenge. In this paper, an electromagnetic (EM) wave modulation metasurface capable of reflection, transmission, and absorption is proposed. This multitasking capability is achieved through a cleverly designed multi-layer structure comprising an EM Wave Shield Layer (ESL), a Polarization Modulation Layer (PML), and a Bottom Plate Layer (BPL). The functionality can be arbitrarily switched by embedding control materials within the structure. Depending on external excitation conditions, the proposed metasurface can realize reflection-type co-planar polarization to cross-polarization conversion, transmission-type electromagnetically induced transparency-like (EIT-like) modes, and broadband absorption. Notably, all tasks operate approximately within the same operating frequency band, and their performance can be regulated by the intensity of external excitation. Additionally, the operating principle of the metasurface is analyzed through impedance matching, an oscillator coupling model, and surface current distribution. This metasurface design offers a strategy for integrated devices with multiple functionalities.
Collapse
Affiliation(s)
- Jiayun Wang
- State Key Laboratory of Dynimic Measurement Technology, North University of China, Taiyuan 030051, China
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Yuanyuan Niu
- Shanxi Polytechnic College, Taiyuan 030006, China
- Institute for History of Science and Technology, Shanxi University, Taiyuan 030006, China
| | - Qiang Zhao
- Shanxi Lanhua Coal Industry Group Co., Ltd., Jincheng 048026, China; (Q.Z.); (Y.S.)
| | - Yuxue Shang
- Shanxi Lanhua Coal Industry Group Co., Ltd., Jincheng 048026, China; (Q.Z.); (Y.S.)
| | - Yuanhui Wang
- School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China;
| |
Collapse
|
2
|
Wang J, Niu Y, Kang J, Qu Z, Duan J, Zhang B. Multipath-controlled bidirectional metasurface for multitasking polarization regulation and absorption. OPTICS EXPRESS 2024; 32:6391-6408. [PMID: 38439343 DOI: 10.1364/oe.512244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024]
Abstract
In the design of metasurfaces, integrating multiple tasks into a single small unit cell and achieving regulation through various paths pose a serious challenge. In this paper, a multipath-controlled bidirectional metasurface (MCBM) is designed to achieve polarization regulation, perfect absorption and total reflection as multitasking functions. The findings demonstrate that under different excitation conditions, when co-planar polarized terahertz (THz) waves are incident normally on the metasurface, the MCBM can convert co-planar polarization to cross-polarization, co-planar polarization to circular polarization wave in reflection mode, and co-planar polarization to cross-polarization in transmission, respectively. When co-planar polarized THz waves are incident from the back side of the metasurface, the tasks of MCBM change to broadband perfect absorption, total reflection, and transmission co-planar polarization to cross-polarization conversion. Remarkably, all operating frequency bands of these tasks are very approximate. Additionally, the multitasking functions can be switched by altering the excitation conditions, and their performance can be regulated through multipath controls, such as the temperature, voltage, and polarization status. Our design provides an effective strategy for multipath-controlled multitasking integrated devices in the THz band.
Collapse
|
3
|
Fu M, Wang J, Guo S, Wang Z, Yang P, Niu Y. A Polarization-Insensitive Broadband Terahertz Absorber Using Patterned Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3763. [PMID: 36364549 PMCID: PMC9656102 DOI: 10.3390/nano12213763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
A polarization-insensitive broadband terahertz absorber with a sandwich structure of metal−dielectric-graphene is designed and simulated. The graphene is patterned as an array of graphene square blocks with circular apertures. The results of the simulations and theoretical analysis show that the absorption exceeds 99% from 0.93 to 1.65 THz while 90% from 0.80 to 1.87 THz, and a broad relative bandwidth of 80.2% is achieved. The absorption performance is passively enhanced by altering physical dimensions of the graphene pattern and actively adjusted by changing the chemical potential of graphene. When the chemical potential increases from 0.1 eV to 0.7 eV, the corresponding terahertz absorption increases from 59.1% to 99%. The mechanism of absorption is disclosed by analyzing the impedance matching theory and distribution of electric-field intensity. In addition, different polarization modes and incident angles are also studied. The proposed absorber has the superiorities of broad relative bandwidth, high absorption rate, polarization insensitivity, and a wide incident angle, which offers some potential applications in the field of terahertz technology such as imaging, detection, and cloaking.
Collapse
Affiliation(s)
- Maixia Fu
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinyi Wang
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shaoshuai Guo
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhaoying Wang
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pengxu Yang
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingying Niu
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
A Review: The Functional Materials-Assisted Terahertz Metamaterial Absorbers and Polarization Converters. PHOTONICS 2022. [DOI: 10.3390/photonics9050335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
When metamaterial structures meet functional materials, what will happen? The recent rise of the combination of metamaterial structures and functional materials opens new opportunities for dynamic manipulation of terahertz wave. The optical responses of functional materials are greatly improved based on the highly-localized structures in metamaterials, and the properties of metamaterials can in turn be manipulated in a wide dynamic range based on the external stimulation. In the topical review, we summarize the recent progress of the functional materials-based metamaterial structures for flexible control of the terahertz absorption and polarization conversion. The reviewed devices include but are not limited to terahertz metamaterial absorbers with different characteristics, polarization converters, wave plates, and so on. We review the dynamical tunable metamaterial structures based on the combination with functional materials such as graphene, vanadium dioxide (VO2) and Dirac semimetal (DSM) under various external stimulation. The faced challenges and future prospects of the related researches will also be discussed in the end.
Collapse
|
5
|
Peng H, Yang K, Huang Z, Chen Z. Broadband terahertz tunable multi-film absorber based on phase-change material. APPLIED OPTICS 2022; 61:3101-3106. [PMID: 35471285 DOI: 10.1364/ao.454639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Based on the impedance matching method, we have numerically demonstrated a broadband tunable multilayer structure in a terahertz (THz) regime. The switchable functional characteristics of the absorber can be achieved by utilizing the phase transition property of vanadium dioxide (VO2). When VO2 is in the metallic state, the designed device behaves as a broadband absorber with an absorbance greater than 90% under normal incident from a 4.5 to 10 THz range. When VO2 is in the insulating state, the absorption in this band is down to near 0%. Moreover, this high absorption band shows a good polarization insensitive property and can be maintained over a range of incident angles up to 45°. Our proposed device exhibits the merits of wideband reconfigure absorbance in THz, and the absorber can be easily fabricated without involving any lithographic process, both of which are very attractive to potential THz applications such as sensing, camouflaging, and modulation of THz waves.
Collapse
|
6
|
Cheng R, Zhou Y, Liu J, Hu S, Liu H, Pan J, Huang W, He X, Liang B, Zhang L. Independently tunable multi-band terahertz absorber based on graphene sheet and nanoribbons. OPTICS EXPRESS 2022; 30:3893-3902. [PMID: 35209638 DOI: 10.1364/oe.450606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
A multi-band terahertz (THz) absorber based on graphene sheet and nanoribbons is proposed and investigated. In the studied frequency range, five absorption peaks are observed, with four originate from lateral Fabry-Perot resonance (LFPR) and one originates from guided-mode resonance (GMR). The LFPR and GMR peaks behave differently when geometric parameters are adjusted, which makes independent tuning possible. When period increases, the GMR peak red shifts and the frequencies of LFPR peaks remain almost unchanged. On the contrary, as nanoribbon width increases, the frequency of GMR remains almost unchanged while that of LFPRs decrease significantly. With increasing top dielectric layer thickness, the LFPR peaks blue shift while the GMR peak red shifts. In addition, the absorber has the merit of multi-band high absorptivity and frequency stability under large angle oblique incidence. The proposed terahertz absorber may benefit the areas of medical imaging, sensing, non-destructive testing, THz communications and other applications.
Collapse
|
7
|
Qiu Y, Wang J, Xiao M, Lang T. Broadband terahertz metamaterial absorber: design and fabrication. APPLIED OPTICS 2021; 60:10055-10061. [PMID: 34807109 DOI: 10.1364/ao.440457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
We proposed and experimentally demonstrated a broadband terahertz (THz) metamaterial absorber based on a symmetrical L-shaped metallic resonator. The absorber structure produces two absorption peaks at 0.491 and 0.73 THz, with the absorption rates of 98.6% and 99.6%, respectively. Broadband absorption was obtained from 0.457 to 1 THz, achieving a >90% absorption bandwidth of 0.543 THz. By analyzing the distributions of the electric and magnetic field at the two resonance frequencies, electric and magnetic dipole resonances were proposed to explain the broadband absorption mechanism. Furthermore, various widths and lengths of the symmetrical L-shaped metallic resonator on the absorption characteristics were investigated. Moreover, the broadband absorption characteristic can be maintained with an incident angle of up to 45° for transverse-electric and 30° for transverse-magnetic polarization. Finally, we experimentally observed a >70% broadband absorption characteristic from 0.42 to 1 THz. This proposed absorber has the potential for bolometric imaging, modulating, and spectroscopy in the THz region.
Collapse
|
8
|
Zareian-Jahromi E, Nourbakhsh M, Basiri R, Mashayekhi V. Ultra-wideband graphene-based absorber in the terahertz regime based on elliptical slots and a complementary sinusoidal-patterned dielectric layer. APPLIED OPTICS 2021; 60:7297-7303. [PMID: 34613018 DOI: 10.1364/ao.431075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
A graphene-based absorber is presented based on elliptical slots and a complementary sinusoidal-patterned dielectric layer. The proposed absorber structure includes upper dielectric and metal film layers resulting in a Fabry-Perot cavity. The produced cavity enhances the confinement of electromagnetic waves. The presented absorber yields an absolute bandwidth of 4.02 THz (0.51-4.53 THz) considering an 0.88 absorbance level together with normal incidence. The presented structure benefits from an almost insensitive ultra-wideband absorbing performance as θ varies up to 50°and 60° for TE and TM polarizations, respectively. Moreover, the considered symmetry in the design procedure results in an almost insensitive structure with respect to the φ incident angle. Finally, the obtained 160% fractional bandwidth is much greater compared to mentioned previous works in literature.
Collapse
|
9
|
Triple-Band Anisotropic Perfect Absorbers Based on α-Phase MoO 3 Metamaterials in Visible Frequencies. NANOMATERIALS 2021; 11:nano11082061. [PMID: 34443892 PMCID: PMC8399631 DOI: 10.3390/nano11082061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022]
Abstract
Anisotropic materials provide a new platform for building diverse polarization-dependent optical devices. Two-dimensional α-phase molybdenum trioxides (α-MoO3), as newly emerging natural van der Waals materials, have attracted significant attention due to their unique anisotropy. In this work, we theoretically propose an anisotropic perfect metamaterial absorber in visible frequencies, the unit cell of which consists of a multi-layered α-MoO3 nanoribbon/dielectric structure stacked on a silver substrate. Additionally, the number of perfect absorption bands is closely related to the α-MoO3 nanoribbon/dielectric layers. When the proposed absorber is composed of three α-MoO3 nanoribbon/dielectric layers, electromagnetic simulations show that triple-band perfect absorption can be achieved for polarization along [100], and [001] in the direction of, α-MoO3, respectively. Moreover, the calculation results obtained by the finite-difference time-domain (FDTD) method are consistent with the effective impedance of the designed absorber. The physical mechanism of multi-band perfect absorption can be attributed to resonant grating modes and the interference effect of Fabry–Pérot cavity modes. In addition, the absorption spectra of the proposed structure, as a function of wavelength and the related geometrical parameters, have been calculated and analyzed in detail. Our proposed absorber may have potential applications in spectral imaging, photo-detectors, sensors, etc.
Collapse
|
10
|
Zhou F, Qin F, Yi Z, Yao W, Liu Z, Wu X, Wu P. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys Chem Chem Phys 2021; 23:17041-17048. [PMID: 34342321 DOI: 10.1039/d1cp03036a] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solar energy absorption is a very important field in photonics. The successful development of an efficient, wide-band solar absorber is an extremely powerful driver in this field. We propose an ultra-wideband (UWB) solar energy absorber composed of a Ti ring and SiO2-Si3N4-Ti thin films. In the range of 300-4000 nm, the wide band has an absorption efficiency of more than 90% and can reach 3683 nm, and it has four absorption peaks with a high absorptivity. Moreover, the weighted average absorption efficiency of the solar absorber under AM 1.5 is maintained above 97.03%, which indicates it has great potential for use in the field of solar energy absorption. Moreover, we proved that the polarization is insensitive by analyzing the absorption characteristics at arbitrary polarization angles. For both the transverse electric (TE) and transverse magnetic (TM) modes, the UWB absorption is maintained at more than 90% in the wide incidence angle range of 60°. The UWB solar energy absorber has great potential for use in a variety of applications, such as converting solar light and heat into electricity for public use and reducing the side effects of coal-fired power generation. It can also be used in information detection and infrared thermal imaging owing to its UWB characteristics.
Collapse
Affiliation(s)
- Fengqi Zhou
- School of Science, East China Jiaotong University, Nanchang 330013, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang C, Zhang H, Ling F, Zhang B. Dual-regulated broadband terahertz absorber based on vanadium dioxide and graphene. APPLIED OPTICS 2021; 60:4835-4840. [PMID: 34143037 DOI: 10.1364/ao.426396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
A tunable broadband terahertz (THz) absorber based on vanadium dioxide (${{\rm VO}_2}$) and graphene is proposed. The absorber, consisting of the ${{\rm VO}_2}$ square loop, polymethacrylimide (PMI) dielectric layer, and a layer of unpatterned graphene, can achieve absorption over 90% from 1.04 THz to 5.51 THz and relative bandwidth of up to 136.5% under normal incidence. Its absorption bandwidth and absorption peak can be adjusted by changing the conductivity of ${{\rm VO}_2}$ or the chemical potential of graphene. The physical mechanism of the absorber is analyzed in detail by the use of the impedance matching theory and the electric field distributions of the ${{\rm VO}_2}$ layer and graphene layer. The proposed absorber, with polarization insensitivity and incidence angle of 30° for both TE and TM polarizations, may have potential applications in tunable sensors, modulators, and imaging.
Collapse
|
12
|
Pan J, Hu H, Li Z, Mu J, Cai Y, Zhu H. Recent progress in two-dimensional materials for terahertz protection. NANOSCALE ADVANCES 2021; 3:1515-1531. [PMID: 36132557 PMCID: PMC9419147 DOI: 10.1039/d0na01046d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 06/15/2023]
Abstract
With the wide applications of terahertz (THz) devices in future communication technology, THz protection materials are essential to overcome potential threats. Recently, THz metamaterials (MMs) based on two-dimensional (2D) materials (e.g., graphene, MXenes) have been extensively investigated due to their unique THz response properties. In this review, THz protection theories are briefly presented first, including reflection loss and shielding mechanisms. Then, the research progress of graphene and other 2D material-based THz MMs and intrinsic materials are reviewed. MMs absorbers in the forms of single layer, multiple layers, hybrid and tunable metasurfaces show excellent THz absorbing performance. These studies provide a sufficient theoretical and practical basis for THz protection, and superior properties promised the wide application prospects of 2D MMs. Three-dimensional intrinsic THz absorbing materials based on porous and ordered 2D materials also show exceptional THz protection performance and effectively integrate the advantages of intrinsic properties and the structural characteristics of 2D materials. These special structures can optimize the surface impedance matching and enable multiple THz scatterings and electric transmission loss, which can realize high-efficiency absorption loss and active controllable protection performance in ultra-wide THz wavebands. Finally, the advantages and existing problems of current THz protection materials are summarized, and their possible future development and applications are prospected.
Collapse
Affiliation(s)
- Jialiang Pan
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University Beijing 100084 China
- The First Scientific Research Institute of Wuxi Wuxi 214035 Jiangsu China
| | - Haowen Hu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University Beijing 100084 China
| | - Zechen Li
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University Beijing 100084 China
| | - Jingyang Mu
- The First Scientific Research Institute of Wuxi Wuxi 214035 Jiangsu China
| | - Yunxiang Cai
- The First Scientific Research Institute of Wuxi Wuxi 214035 Jiangsu China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
13
|
Feng H, Xu Z, Li K, Wang M, Xie W, Luo Q, Chen B, Kong W, Yun M. Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials. OPTICS EXPRESS 2021; 29:7158-7167. [PMID: 33726222 DOI: 10.1364/oe.418865] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we design a polarization-independent and angle-insensitive broadband THz graphene metamaterial absorber based on the surface plasmon-polaritons resonance. Full-wave simulation is conducted, and the results show that the designed metamaterial absorber has an absorption above 99% in the frequency range from 1.23 THz to 1.68 THz, which refers to a very high standard. Furthermore, the absorber has the properties of tunability, and the absorption can be nearly adjusted from 1% to 99% by varying the Fermi energy level of the graphene from 0 eV to 0.7 eV. In the simulation, when the incident angles of TE and TM waves change from 0° to 60°, the average absorption keeps greater than 80%. The proposed absorber shows promising performance, which has potential applications in developing graphene-based terahertz energy harvesting and thermal emission.
Collapse
|
14
|
Yao W, Tang L, Nong J, Wang J, Yang J, Jiang Y, Shi H, Wei X. Electrically tunable graphene metamaterial with strong broadband absorption. NANOTECHNOLOGY 2021; 32:075703. [PMID: 33096539 DOI: 10.1088/1361-6528/abc44f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The coupling system with dynamic manipulation characteristics is of great importance for the field of active plasmonics and tunable metamaterials. However, the traditional metal-based architectures suffer from a lack of electrical tunability. In this study, a metamaterial composed of perpendicular or parallel graphene-Al2O3-graphene stacks is proposed and demonstrated, which allows for the electric modulation of both graphene layers simultaneously. The resultant absorption of hybridized modes can be modulated to more than 50% by applying an external voltage, and the absorption bandwidth can reach 3.55 μm, which is 1.7 times enhanced than the counterpart of single-layer graphene. The modeling results demonstrate that the small relaxation time of graphene is of great importance to realize the broadband absorption. Moreover, the optical behaviors of the tunable metamaterial can be influenced by the incident polarization, the dielectric thickness, and especially by the Fermi energy of graphene. This work is of a crucial role in the design and fabrication of graphene-based broadband optical and optoelectronic devices.
Collapse
Affiliation(s)
- Wei Yao
- School of Optoelectronic Science and Engineering, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Linlong Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Jinpeng Nong
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Jun Wang
- School of Optoelectronic Science and Engineering, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Jun Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Yadong Jiang
- School of Optoelectronic Science and Engineering, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Haofei Shi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Xingzhan Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| |
Collapse
|
15
|
Li H, Xu W, Cui Q, Wang Y, Yu J. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device. OPTICS EXPRESS 2020; 28:40060-40074. [PMID: 33379540 DOI: 10.1364/oe.414961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
An actively reconfigurable broadband terahertz (THz) metamaterial functional device based on the phase-change material vanadium dioxide (VO2) and two-dimensional graphene material is theoretically proposed and demonstrated. The device has excellent tolerance under oblique incidence. When the VO2 is in the metallic state, and the Fermi energy of graphene is fixed at 0.1 eV, the designed device acts as a broadband THz absorber in the transverse magnetic (TM) polarization mode. The absorptance bandwidth exceeds 0.55 THz with a complete absorption intensity of more than 90%. In this state, the absorber operates as a broadband modulator with the total modulation depth exceeding 91.5% as the continually decreased conductivity of VO2 from 200000 S/m to 10 S/m. In the transverse electric (TE) polarization process, the structure behaves as a dual-band absorber with two perfect absorption peaks. When the conductivity of VO2 is changed, the tunable absorber can also be regarded as an absorptance modulator, with a maximum modulation intensity of 92.1%. Alternatively, when VO2 behaves as an insulator at room temperature in the TE polarization mode, a strong broadband electromagnetically induced transparency (EIT) window is obtained, with a bandwidth exceeding 0.42 THz in the transmittance spectrum. By varying the Fermi energy of graphene from 0 to 0.9 eV, the EIT-like window or broadband transmission spectrum (in TM mode) can be switched. The results indicate that the device can also be operated as a modulator in the transmission mode. The impedance matching theory is used, and electric field distributions are analyzed to quantify the physical mechanism. An advantage of the manipulation of the polarization angle is that the modulation performance of the proposed multi-functional THz device can be regulated after fabricated.
Collapse
|
16
|
Ye L, Chen X, Zhu C, Li W, Zhang Y. Switchable broadband terahertz spatial modulators based on patterned graphene and vanadium dioxide. OPTICS EXPRESS 2020; 28:33948-33958. [PMID: 33182873 DOI: 10.1364/oe.406090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
We numerically demonstrate a switchable broadband terahertz spatial modulator composed of ginkgo-leaf-patterned graphene and transition material vanadium dioxide (VO2). The phase transition property of VO2 is used to switch the spatial modulator from absorption mode to transmission mode, and the graphene behaves as dynamically adjustable material for a large scale of absorption and transmittance modulation. When VO2 is in the metallic state and the Fermi energy of graphene is set as 0.8 eV, the proposed modulator behaves as a broadband absorber with the absorbance over 85% from 1.33 to 2.83 THz. By adjusting the graphene Fermi level from 0 to 0.8 eV, the peak absorbance can be continuously tuned from 24.3% to near 100% under the absorption mode, and the transmittance at 2.5 THz can be continuously tuned from 87% to 35.5% under the transmission mode. To further increase the bandwidth, a three-layer-patterned-graphene is introduced into a new modulator design, which achieves a wide bandwidth of 3.13 THz for the absorbance over 85%. By the combination of the tunability of graphene and VO2, the proposed modulators not only can flexibly switch between dual-functional modulation modes of absorption and transmission but also possess deep modulation depth. Benefitting from the excellent modulation performance, the proposed switchable dual-functional spatial modulators may offer significant potential applications in various terahertz smart optoelectronic devices.
Collapse
|
17
|
Han J, Chen R. Tunable broadband terahertz absorber based on a single-layer graphene metasurface. OPTICS EXPRESS 2020; 28:30289-30298. [PMID: 33114911 DOI: 10.1364/oe.403631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a broadband and tunable terahertz absorber based on a graphene metasurface in a sandwiched structure is introduced. A single-layered graphene patterned with hollow-out squares is applied in this design, which is continuously connected to provide convenience for electrical tuning and fabrication. Plasmonic coupling and hybridization inside the graphene pattern can significantly enhance the absorption bandwidth. Moreover, polarization-insensitive and omnidirectional performances are also guaranteed by the symmetrical design. Full wave simulations demonstrate that the absorber exhibits over 90% absorbance within 1.14∼3.31 THz with a fractional bandwidth up to 97.5%. The device reveals tunable absorbance from 14% to almost 100% by manipulating the graphene chemical potential from 0 to 0.9 eV. When the incident angle sweeps up to 55°, the absorbance remains more than 90% from 1.77 to 3.42 THz for TE polarization, while over 90% absorbance maintains around 3.3 THz for TM polarization. These superior abilities guarantee the applicability of the presented absorber in THz cloaking, tunable sensor and photovoltaic devices.
Collapse
|
18
|
Li H, Yu J. Bifunctional terahertz absorber with a tunable and switchable property between broadband and dual-band. OPTICS EXPRESS 2020; 28:25225-25237. [PMID: 32907048 DOI: 10.1364/oe.401992] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we propose a terahertz bifunctional absorber with broadband and dual-band absorbing properties based on a hybrid graphene-vanadium dioxide (VO2) metamaterial configuration. When VO2 is in the insulating state and the Fermi energy of graphene is set to 0.8 eV, the designed device behaves as a tunable perfect dual-band absorber. The operating bandwidth and magnitude of the dual-band spectrum can be continuously adjusted by changing the Fermi energy of graphene. When VO2 is changed from insulator to metal, the designed system can be regarded as a broadband absorber, it has a broad absorption band in the range of 1.45-4.37 THz, and the corresponding absorptance is more than 90%. The simulation results indicate that the absorptance can be dynamically changed from 17% to 99% by adjusting the conductivity of the VO2 when the Fermi energy of graphene is fixed at 0.01 eV. Besides, both dual absorption spectrum and broad absorption spectrum maintain a strong polarization-independent characteristic and operate well at wide incident angles. Furthermore, we have introduced the interference theory to explain the physical mechanism of the absorption from an optical method. Therefore, our designed system can be applied in many promising fields like cloaking and switch.
Collapse
|
19
|
Xiong H, Shen Q. A thermally and electrically dual-tunable absorber based on Dirac semimetal and strontium titanate. NANOSCALE 2020; 12:14598-14604. [PMID: 32614017 DOI: 10.1039/d0nr03345f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, we proposed a bi-tunable terahertz (THz) metamaterial absorber based on bulk Dirac semimetal (BDS) and strontium titanate (STO). When the values of Fermi energy EF and temperature (T) are equal to 40 meV and 300 K, the simulation result shows that the absorption frequency is centered at 3.69 THz with nearly 100% absorption rates. Interestingly, by adjusting the Fermi energy EF of the BDS pattern from 10 to 80 meV, the peak absorptivity can be continuously tuned from 70% to 99.9%, and the absorption frequency point shifts from 3.265 to 4.82 THz. Meanwhile, when the temperature of the STO metamaterial changes from 200 to 300 K, the absorption frequency point can be dynamically controlled from 2.665 to 3.69 THz with a fixed amplitude. When Fermi energy EF of the BDS and temperature T of STO were varied, the relative impedances of the absorber were investigated. Furthermore, the electric field and power loss density distributions were also examined to further explain the related physical mechanism. Owing to its symmetrical structure, the proposed absorber demonstrates intensity polarization-independent characteristics and can maintain stable absorption with a large range of incident angles. The proposed absorber may be used in various devices such as detectors, selective heat emitters, and smart devices.
Collapse
Affiliation(s)
- Han Xiong
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China. and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, 400044, China and State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 211189, China
| | - Qi Shen
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
20
|
Bordbar A, Basiry R, Yahaghi A. Design and equivalent circuit model extraction of a broadband graphene metasurface absorber based on a hexagonal spider web structure in the terahertz band. APPLIED OPTICS 2020; 59:2165-2172. [PMID: 32225748 DOI: 10.1364/ao.385476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
In this paper, an ultra-wideband terahertz absorber is designed utilizing a graphene-based metasurface. The absorber is composed of three layers including the graphene metasurface, Topas-cyclic olefin copolymer dielectric substrate, and a gold ground layer. The particle swarm optimization algorithm and interpolate quasi-Newton optimization are utilized to find an optimized structure with the widest bandwidth. Full-wave simulations verify achieving absorbance of more than 90% in an extremely wide frequency band within the range of 1 THz to 3.5 THz (fractional bandwidth = 111%) under illumination of a normal incident wave. The proposed structure is polarization insensitive up to a polarization angle of 75°, while the performance of the absorber (absorbance level and bandwidth) is almost fixed for incident angles $ \theta $θ up to 60°. Moreover, the switching capability of the structure from reflection ($ {\gt} 92\% $>92%) to absorption ($ {\gt} 90\% $>90%) is investigated. The equivalent circuit model is extracted for the designed absorber, and the corresponding result is compared to that of the full-wave simulation, which confirms the validity of the extracted circuit.
Collapse
|
21
|
Chen F, Cheng Y, Luo H. A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene. MATERIALS 2020; 13:ma13040860. [PMID: 32075066 PMCID: PMC7078681 DOI: 10.3390/ma13040860] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 11/16/2022]
Abstract
We present a simple design of a broadband tunable metamaterial absorber (MMA) in the terahertz (THz) region, which consists of a single layer complementary gammadion-shaped (CGS) graphene sheet and a polydimethylsiloxane (PDMS) dielectric substrate placed on a continuous metal film. The Fermi energy level (Ef) of the graphene can be modulated dynamically by the applied DC bias voltage, which enables us to electrically control the absorption performance of the proposed MMA flexibly. When Ef = 0.8 eV, the relative bandwidth of the proposed MMA, which represents the frequency region of absorption beyond 90%, can reaches its maximal value of 72.1%. Simulated electric field distributions reveal that the broadband absorption mainly originates from the excitation of surface plasmon polaritons (SPPs) on the CGS graphene sheet. Furthermore, the proposed MMA is polarization-insensitive and has wide angles for both transverse-electric (TE) and transverse-magnetic (TM) waves in the broadband frequency range. The broadband absorption capacity of the designed MMA can be effectively adjusted by varying the Fermi energy level of graphene. Lastly, the absorbance of the MMA can be adjusted from 42% to 99.1% by changing the Ef from 0 eV to 0.8 eV, which is in agreement with the theoretical calculation by using the interference 41theory. Due to its simple structure and flexible tunability, the proposed MMA has potential application prospects in tunable filtering, modulators, sensing, and other multispectral devices.
Collapse
|
22
|
Xiao D, Zhu M, Sun L, Zhao C, Wang Y, Tong Teo EH, Hu F, Tu L. Flexible Ultra-Wideband Terahertz Absorber Based on Vertically Aligned Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43671-43680. [PMID: 31640338 DOI: 10.1021/acsami.9b14428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultra-wideband absorbers have been extensively used in wireless communications, energy harvesting, and stealth applications. Herein, with the combination of experimental and theoretical analyses, we develop a flexible ultra-wideband terahertz absorber based on vertically aligned carbon nanotubes (VACNTs). Measured results show that the proposed absorber is able to work efficiently within the entire THz region (e.g., 0.1-3.0 THz), with an average power absorptance of >98% at normal incidence. The absorption performance remains at a similar level over a wide range of incident angle up to 60°. More importantly, our devices can function normally, even after being bent up to 90° or after 300 bending cycles. The total thickness of the device is about 360 μm, which is only 1/8 of the wavelength for the lowest evaluated frequency of 0.1 THz. The new insight into the VACNT materials paves the way for applications such as radar cross-section reduction, electromagnetic interference shielding, and flexible sensing because of the simplicity, flexibility, ultra-wideband operation, and large-scale fabrication of the device.
Collapse
Affiliation(s)
- Dongyang Xiao
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , China
| | - Minmin Zhu
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
- Temasek Laboratories , Research Techno Plaza, 50 Nanyang Drive , Singapore 637553 , Singapore
| | - Leimeng Sun
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , China
| | - Chun Zhao
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , China
| | - Yurong Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , China
| | - Edwin Hang Tong Teo
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Fangjing Hu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , China
| | - Liangcheng Tu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , China
| |
Collapse
|
23
|
Nourbakhsh M, Zareian-Jahromi E, Basiri R. Ultra-wideband terahertz metamaterial absorber based on Snowflake Koch Fractal dielectric loaded graphene. OPTICS EXPRESS 2019; 27:32958-32969. [PMID: 31878371 DOI: 10.1364/oe.27.032958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/21/2019] [Indexed: 05/21/2023]
Abstract
In this paper, an ultra-wideband terahertz metamaterial absorber is introduced based on a Snowflake Koch Fractal (SKF) dielectric loaded on a sheet of graphene. Instead of multilayered-graphene conventional structures, a single-layered non-structured graphene absorber is presented based on gradient width modulation and cavity method. The structure of the absorber is composed of four layers, which are upper SKF dielectric and metal film layer form two mirrors of an asymmetric Fabry-Perot cavity to confine terahertz electromagnetic (EM) waves. Full wave simulations demonstrate that the proposed structure is highly efficient whereas a 161% fractional bandwidth of over 0.9 absorbance is achieved under normal incident wave considering both TE and TM polarizations. The proposed structure is polarization insensitive yielding the same absorbance for both TE and TM polarizations. The absorbance and bandwidth of the structure is almost independent of altering the incident angle θ up to 60° and 30° for TM and TE polarizations, respectively. Avoiding graphene processing and simple shape geometry are the interesting advantages of this structure resulting in feasible fabrication. The proposed structure provides much greater absorbance bandwidth in comparison to previous works.
Collapse
|
24
|
A Simple and Efficient Method for Designing Broadband Terahertz Absorber Based on Singular Graphene Metasurface. NANOMATERIALS 2019; 9:nano9101351. [PMID: 31547082 PMCID: PMC6836235 DOI: 10.3390/nano9101351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/17/2022]
Abstract
In this paper, we propose a simple and efficient method for designing a broadband terahertz (THz) absorber based on singular graphene patches metasurface and metal-backed dielectric layer. An accurate circuit model of graphene patches is used for obtaining analytical expressions for the input impedance of the proposed absorber. The input impedance is designed to be closely matched to the free space in a wide frequency range. Numerical simulation and analytical circuit model results consistently show that graphene metasurface-based THz absorber with an absorption value above 90% in a relative bandwidth of 100% has been achieved.
Collapse
|
25
|
Huang X, Yang F, Gao B, Yang Q, Wu J, He W. Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime. OPTICS EXPRESS 2019; 27:25902-25911. [PMID: 31510452 DOI: 10.1364/oe.27.025902] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/31/2019] [Indexed: 05/19/2023]
Abstract
A tunable metamaterial absorber is proposed in the terahertz regime. The amplitude and center frequency of the absorber can be tuned independently. Owing to the effective combination of graphene and strontium titanate (STO) in one metamaterial structure, the tunable properties of the amplitude and center frequency are implemented. The amplitude can be tuned by adjusting the chemical potential of graphene sheet, and center frequency can get a shift through temperature changes in the STO material. In a full-wave numerical simulation, the amplitude of the absorber can be tuned from approximately 100% to 35% with a fixed center frequency when chemical potential varies from 0.7 eV to 0.0 eV. The center frequency of the absorber can shift from 0.43 THz to 0.3 THz when temperature changes from 400 K to 200 K. The complex surface impedance of the graphene and permittivity of STO material in this research range are thoroughly examined, and the independently tunable mechanism of the absorber is explored by elucidating the electric field distribution. The influence of the oblique incidence of electromagnetic wave to the absorber is studied. The absorber can be scalable to the infrared and visible frequencies and demonstrates promising application on tunable sensors, filters, and photovoltaic devices.
Collapse
|
26
|
Graphene-Based THz Absorber with a Broad Band for Tuning the Absorption Rate and a Narrow Band for Tuning the Absorbing Frequency. NANOMATERIALS 2019; 9:nano9081138. [PMID: 31398824 PMCID: PMC6722701 DOI: 10.3390/nano9081138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 11/30/2022]
Abstract
In this paper, we propose a broadband absorption-controllable absorber based on nested nanostructure graphene and a narrowband frequency-tunable absorber utilizing gold-graphene hybrid structure in the terahertz regime. The numerical simulation results showed that the absorption of the broadband absorber can be changed from 27% to more than 90% over 0.75 to 1.7 THz by regulating the chemical potential of graphene. With the same regulation mechanism, the absorbing peak of the narrowband absorber can be moved from 2.29 to 2.48 THz continuously with absorption of 90%. Furthermore, via the cascade of the two types of absorbers, an independently tunable dual-band absorber is constituted. Its absorption spectrum is the superposition of absorption-controllable absorber and frequency-tunable absorber. The absorptivity and operating frequency of the two absorbing bands can be tuned independently without mutual inference. Moreover, it is insensitive to the polarization and it maintains high absorption over a wide range of incident angle. For the flexibility, tunability as well as the independence of polarization and angle, this design has wide prospects in various applications.
Collapse
|
27
|
Li Y, Liu Z, Zhang H, Tang P, Wu B, Liu G. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. OPTICS EXPRESS 2019; 27:11809-11818. [PMID: 31053021 DOI: 10.1364/oe.27.011809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
We present an ultra-broadband perfect absorber composed of metal-insulator composite multilayer (MICM) stacks by placing the insulator-metal-insulator (IMI) grating on the metal-insulator-metal (MIM) film stacks. The absorber shows over 90% absorption spanning between 570 nm and 3539 nm, with an average absorption of 97% under normal incidence. The ultra-broadband perfect absorption characteristics are achieved by the synergy of guided mode resonances (GMRs), localized surface plasmons (LSPs), propagating surface plasmons (PSPs), and cavity modes. The polarization insensitivity is demonstrated by analyzing the absorption performance over arbitrary polarization angles. The ultra-broadband absorption remains more than 80% over a wide incident angle up to 50°, for both transverse electric (TE) and transverse magnetic (TM) modes. The ultra-broadband perfect absorber has tremendous potential for various applications, such as solar thermal energy harvesting, thermoelectrics, and imaging.
Collapse
|
28
|
Zhang B, Li H, Xu H, Zhao M, Xiong C, Liu C, Wu K. Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial. OPTICS EXPRESS 2019; 27:3598-3608. [PMID: 30732376 DOI: 10.1364/oe.27.003598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
We propose a novel simple patterned monolayer graphene metamaterial structure based on tunable terahertz plasmon-induced transparency (PIT). Destructive interference in this structure causes pronounced PIT phenomenon, and the PIT response can be dynamically controlled by voltage since the existence of continuous graphene bands in the structural design. The theoretical transmission of this structure is calculated by coupled mode theory (CMT), and the results are highly consistent with the simulation curve. After that, the influence of the graphene mobility on the PIT response and absorption characteristics is researched. It is found that the absorption efficiency of our designed structure can reach up to 50%, meaning the structure is competent to prominent terahertz absorber. Moreover, the slow-light performance of this structure is discussed via analyzing the group refractive index and phase shift. It shows that the structure possesses a broad group refractive index band with ultra-high value, and the value is up to 382. This work will diversify the designs for versatile tunable terahertz devices and micro-nano slow-light devices.
Collapse
|