1
|
Liu W, Min C, Zhang Y. Selective plasmonic trapping of nano-particles by Archimedes metalens. OPTICS EXPRESS 2023; 31:35354-35362. [PMID: 37859269 DOI: 10.1364/oe.497015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Optical tweezer is a non-invasive method for optical force tool applied in various fields like biology, physics, and lab on chip manipulation. The Archimedean helix shape is ideal for creating chiral nanostructures, and being able to generate plasmonic focused hotspot field for optical trapping. Here we design a metal disk with the Archimedean shape to own the ability of selective trapping nanoparticles based on the spin-orbit interactions with circularly polarized light. The plasmonic near field on the metalens can be designed by adjusting the geometric parameter flexibly. We numerically analyze the optimal size and screw pitch of the metal disk to realize the switch modulation of hotspot generation, and then demonstrate the novel switchable optical trapping ability in the view of optical force and potential well analysis under the circularly polarized light excitation by a 532 nm laser. The work shows significant potential for on-chip optical trapping in various fields.
Collapse
|
2
|
Robinson H, Roberts MJ, Gardiner RA, Hill MM. Extracellular vesicles for precision medicine in prostate cancer - Is it ready for clinical translation? Semin Cancer Biol 2023; 89:18-29. [PMID: 36681206 DOI: 10.1016/j.semcancer.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Biofluid-based biomarker tests hold great promise for precision medicine in prostate cancer (PCa) clinical practice. Extracellular vesicles (EV) are established as intercellular messengers in cancer development with EV cargos, including protein and nucleic acids, having the potential to serve as biofluid-based biomarkers. Recent clinical studies have begun to evaluate EV-based biomarkers for PCa diagnosis, prognosis, and disease/therapy resistance monitoring. Promising results have led to PCa EV biomarker validation studies which are currently underway with the next challenge being translation to robust clinical assays. However, EV research studies generally use low throughput EV isolation methods and costly molecular profiling technologies that are not suitable for clinical assays. Here, we consider the technical hurdles in translating EV biomarker research findings into precise and cost-effective clinical biomarker assays. Novel microfluidic devices coupling EV extraction with sensitive antibody-based biomarker detection are already being explored for point-of-care applications for rapid provision in personalised medicine approaches.
Collapse
Affiliation(s)
- Harley Robinson
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland, Australia.
| | - Matthew J Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia; Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Robert A Gardiner
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia; Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Ma S, Li X, Hu H, Ma X, Zhao Z, Deng S, Wang J, Zhang L, Wu C, Liu Z, Wang Y. Synergetic osteogenesis of extracellular vesicles and loading RGD colonized on 3D-printed titanium implants. Biomater Sci 2022; 10:4773-4784. [PMID: 35849688 DOI: 10.1039/d2bm00725h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium (Ti) and its alloys have been universally used as surgical implants, and the clinical need for modifying titanium surfaces to accelerate early stage osseointegration and prevent implant loosening is in huge demand. 3D printing technology is an accurate and controllable method to create titanium implants with complex nanostructures, which provide enough space to react and fit in the microenvironment of cells. Recently, extracellular vesicles (EVs) have attracted attention in promoting osteogenesis. The vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) have been proved to pack osteogenic-relative RNAs thereby regulating the osteogenic differentiation and mineralization of the target BMSCs. Arg-Gly-Asp (RGD)-derived peptides are typical peptides used to improve cell attachment and proliferation in bone tissue engineering. A novel strategy is proposed to load RGD-derived peptides on EVs with a fusion peptide (EVsRGD) and colonize EVsRGD on the titanium surface via a specific bonding peptide. In this study, we verify that the presence of EVsRGD enables the realization of the synergetic effect of EVs and RGD, enhancing the osteogenic differentiation and mineralization of BMSCs in vitro, resulting in satisfactory osseointegration around implants in vivo.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomotology, Tianjin Medical University Second Hospital, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Xuewen Li
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 030070, China.
| | - Han Hu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 030070, China.
| | - Xinying Ma
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 030070, China.
| | - Zhezhe Zhao
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 030070, China.
| | - Shu Deng
- Department of Stomotology, Tianjin Medical University Second Hospital, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Jie Wang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 030070, China.
| | - Leyu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 030070, China.
| | - Chenxuan Wu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 030070, China.
| | - Zihao Liu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 030070, China.
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 030070, China.
| |
Collapse
|
4
|
Guimarães CF, Cruz-Moreira D, Caballero D, Pirraco RP, Gasperini L, Kundu SC, Reis RL. Shining a Light on Cancer - Photonics in Microfluidic Tumor Modelling and Biosensing. Adv Healthc Mater 2022:e2201442. [PMID: 35998112 DOI: 10.1002/adhm.202201442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Microfluidic platforms represent a powerful approach to miniaturizing important characteristics of cancers, improving in vitro testing by increasing physiological relevance. Different tools can manipulate cells and materials at the microscale, but few offer the efficiency and versatility of light and optical technologies. Moreover, light-driven technologies englobe a broad toolbox for quantifying critical biological phenomena. Herein, we review the role of photonics in microfluidic 3D cancer modeling and biosensing from three major perspectives. First, we look at optical-driven technologies that allow biomaterials and living cells to be manipulated with micro-sized precision and the opportunities to advance 3D microfluidic models by engineering cancer microenvironments' hallmarks, such as their architecture, cellular complexity, and vascularization. Second, we delve into the growing field of optofluidics, exploring how optical tools can directly interface microfluidic chips, enabling the extraction of relevant biological data, from single fluorescent signals to the complete 3D imaging of diseased cells within microchannels. Third, we review advances in optical cancer biosensing, focusing on how light-matter interactions can detect biomarkers, rare circulating tumor cells, and cell-derived structures such as exosomes. We overview photonic technologies' current challenges and caveats in microfluidic 3D cancer models, outlining future research avenues that may catapult the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Daniela Cruz-Moreira
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - David Caballero
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Luca Gasperini
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| |
Collapse
|
5
|
Liu W, Zhang Y, Min C, Yuan X. Controllable transportation of microparticles along structured waveguides by the plasmonic spin-hall effect. OPTICS EXPRESS 2022; 30:16094-16103. [PMID: 36221461 DOI: 10.1364/oe.451250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/11/2022] [Indexed: 06/16/2023]
Abstract
With the nanoscale integration advantage of near field photonics, controllable manipulation and transportation of micro-objects have possessed plentiful applications in the fields of physics, biology and material sciences. However, multifunctional optical manipulation like controllable transportation and synchronous routing by nano-devices are limited and rarely reported. Here we propose a new type of Y-shaped waveguide optical conveyor belt, which can transport and route particles along the structured waveguide based on the plasmonic spin-hall effect. The routing of micro-particles in different branches is determined by the optical force components difference at the center of the Y junction along the two branches of the waveguide. The influence of light source and structural parameters on the optical forces and transportation capability are numerically studied. The results illustrate that the proposed structured waveguide optical conveyor belt can transport the microparticles controllably in different branches of the waveguide. Due to the selective transportation ability of microparticles by the 2D waveguide, our work shows great application potential in the region of on-chip optical manipulation.
Collapse
|
6
|
Xu F, Liu Y, Zhang C, Jiang M, Zhang J, Wang G, Xu F, Lu Y. Optically levitated conveyor belt based on polarization-dependent metasurface lens arrays. OPTICS LETTERS 2022; 47:2194-2197. [PMID: 35486758 DOI: 10.1364/ol.457314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
In this Letter, we have proposed an optically levitated conveyor belt based on periodic arrays of a polarization-dependent nanoslit-based metasurface lens (NBML) that is capable of realizing far-field capture, transport, and sorting. The NBML in arrays can be lit up in a relay way by rotating the polarization angle of the excitation beam and thereby provide a better stiffness for transporting particles. When excited at the wavelength of 1064 nm and power density of 0.3 mW/µm2, the particles will follow the directional movement of hot spots with an alternative switch of polarization angle and the success ratio of transport can be up to 97.0% with the consideration of Brownian motion. Furthermore, the influence of polarization switching time and incident optical power densities on the efficiency of transport are investigated numerically from a statistical point of view. The sorting of particles with different sizes has also been proved in a given power density. With the analysis of numerical results, our research provides a new approach, to the best of our knowledge, for particle trapping and transport, which is beneficial to on-chip optofluidic applications.
Collapse
|
7
|
Xu X, Thomson DJ, Yan J. Optimisation and scaling effect of dual-waveguide optical trapping in the SOI platform. OPTICS EXPRESS 2020; 28:33285-33297. [PMID: 33114996 DOI: 10.1364/oe.403151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Optical trapping has potential applications in biological manipulation, particle trapping, Raman spectroscopy, and quantum optomechanics. Among the various optical trapping schemes, on-chip dual-waveguide traps combine benefits of stable trapping and mass production. However, no systematic research has been conducted to optimise on-chip dual-waveguide traps so that the trapping capability is maximised. Here, a numerical simulation of an on-chip silicon on insulator (SOI) dual-waveguide optical trap based on Lumerical FDTD Solutions is carried out to optimise the on-chip dual-waveguide trap. It was found that the waveguide thickness is a crucial parameter when designing a dual-waveguide trap, and its optical trapping capability largely depends on the distance between the two waveguides. We show that the optimal waveguide thickness to achieve the maximum trapping capability generally increases with the gap distance, accompanied by a periodic feature due to the interference and the resonant effects within the gap. This optimal waveguide thickness and gap distance are analysed to have clear scaling effects over the input optical wavelength, which paves the way for the design and optimisation of dual-waveguide traps for various applications.
Collapse
|
8
|
Loozen GB, Karuna A, Fanood MMR, Schreuder E, Caro J. Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:829-842. [PMID: 32551208 PMCID: PMC7277546 DOI: 10.3762/bjnano.11.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/05/2020] [Indexed: 06/11/2023]
Abstract
We realized integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy of particles in a fluid. In these devices, multiple beams directed towards the device center lead to a local field enhancement around this center and thus counteract the effect of light concentration near the facets, which is a disadvantage of dual-waveguide traps. Thus, a trapping region is created around the center, where a single particle of a size in a wide range can be trapped and studied spectroscopically, free from the influence of surfaces. We report the design (including simulations), fabrication and performance demonstration for multi-waveguide devices, using our Si3N4 waveguiding platform as the basis. The designed ridge waveguides, optimized for trapping and Raman spectroscopy, emit narrow beams. Multiple waveguides arranged around the central microbath result from fanning out of a single input waveguide using Y-splitters. A second waveguiding layer is implemented for detection of light scattered by the trapped particle. For reliable filling of the device with sample fluid, microfluidic considerations lead to side channels of the microbath, to exploit capillary forces. The interference of the multiple beams produces an array of hot spots around the bath center, each forming a local trap. This property is clearly confirmed in the experiments and is registered in videos. We demonstrate the performance of a 2-waveguide and a 16-waveguide device, using 1 and 3 μm polystyrene beads. Study of the confined Brownian motion of the trapped beads yields experimental values of the normalized trap stiffness for the in-plane directions. The stiffness values for the 16-waveguide device are comparable to those of tightly focused Gaussian beam traps and are confirmed by our own simulations. The Raman spectra of the beads (in this work measured via an objective) show clear peaks that are characteristic of polystyrene. In the low-wavenumber range, the spectra have a background that most likely originates from the Si3N4 waveguides.
Collapse
Affiliation(s)
- Gyllion B Loozen
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - Arnica Karuna
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
- present address: Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Mohammad M R Fanood
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - Erik Schreuder
- LioniX International B.V., P.O. Box 456, 7500 AL, Enschede, Netherlands
| | - Jacob Caro
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| |
Collapse
|