1
|
Li G, Zhang Y, Fan S, Yu F. Underwater biomimetic orientation method using imaging polarization sensor based on direct sunlight compensation. OPTICS EXPRESS 2024; 32:17893-17910. [PMID: 38858958 DOI: 10.1364/oe.520710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/12/2024] [Indexed: 06/12/2024]
Abstract
This paper addresses the challenge of significant interference caused by direct sunlight, which adversely affects the orientation accuracy of underwater imaging polarization sensors (IPS). A novel underwater polarization orientation method is proposed based on direct sunlight compensation. Firstly, based on the polarization transmission model at the water-air interface, the interference mechanism of the underwater direct sunlight polarization detection model was analyzed. The underwater IPS detection model based on direct sunlight compensation is constructed, which uses the weight coefficient of underwater direct sunlight to compensate for the interference on the polarization channel and improve the accuracy of underwater polarization detection models. Furthermore, the analytical solution method for the polarization state information of underwater IPS is proposed, employing the augmented Stokes vectors to construct a linear equation for solving the weight coefficients of direct sunlight and improving the computational efficiency. Finally, an underwater polarization orientation experimental platform is established, and both simulation and actual underwater experiments are conducted. Compared with the traditional methods, the proposed method reduces heading error by an average of 92.53% at different solar altitudes.
Collapse
|
2
|
Li G, Zhang Y, Fan S, Liu C, Yu F, Wei X, Jin W. Attitude and heading measurement based on adaptive complementary Kalman filter for PS/MIMU integrated system. OPTICS EXPRESS 2024; 32:9184-9200. [PMID: 38571157 DOI: 10.1364/oe.519417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
The bionic polarization sensor (PS)/MEMS inertial measurement unit (MIMU) integrated system can provide reliable attitude and heading information for unmanned vehicles in the case of GNSS rejection. However, the existing measurement methods have poor adaptability to inclining, sheltering, and other harsh environments, and do not make full use of the complementary characteristics of the gyroscopes, accelerometers, and PS, which seriously affects the system performance. Therefore, this paper proposes an attitude and heading measurement method based on an adaptive complementary Kalman filter (ACKF), which corrects the gyroscopes according to the gravity measured by the accelerometers to improve the attitude accuracy and fuses the IMU heading and tilt-compensated polarization heading by Kalman optimal estimation. On this basis, the maximum correlation entropy of the measured gravity and the theoretical gravity is used to construct an adaptive factor to realize the adaptive complementary of the gyroscopes and the accelerometers. Finally, the effectiveness of the method is verified by the outdoor rotation test without occlusion and the vehicle test with occlusion. Compared with the traditional Kalman filter, the pitch, roll, and heading RMSE of the vehicle test are reduced by 89.3%, 93.2% and, 9.6% respectively, which verifies the great advantages.
Collapse
|
3
|
Yang J, Liu S, Wang M, Liang L. Solar position detection method by bionic polarized light compass. OPTICS EXPRESS 2024; 32:3751-3763. [PMID: 38297589 DOI: 10.1364/oe.512069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
To address the needs of polarized light navigation for accurate position information of feature points in the sky, an accurate solar position detection method based on an all-sky polarization pattern imaging system is proposed. Unlike the traditional spot-based solar position detection method, this method uses the polarization information inherent in the atmosphere to accurately measure solar position. This approach is characterized by simple detection, high accuracy, and wide application range. The optical acquisition system is composed of three miniature large-field camera modules and polarizers, which enables a more compact structure, smaller size, and lesser height. Based on this principle, the solar position solution algorithm was simulated and then verified in various weather environments using the optical acquisition system built as part of this study. Solar position was detected at different moments on the same day in clear weather, and the accuracy of the measured solar altitude and azimuth angles was 0.024° and 0.03°, respectively. The accuracy of the measured solar altitude and azimuth angles was 0.08° and 0.05°, respectively, when the sun was shielded by high-rise buildings and 0.3° and 0.1° when the sun was shielded by branches and tree leaves. Aerosol concentrations exceeding a certain amount destroyed the Rayleigh distribution pattern of polarized light, thus affecting solar position detection accuracy. It is concluded that this novel detection method can not only meet the needs of polarized light navigation for solar position, but also provide a new exploration idea for enthusiasts who are eager to explore the mysteries of the universe.
Collapse
|
4
|
Pan S, Lin J, Zhang Y, Hu B, Liu X, Yu Q. Image-registration-based solar meridian detection for accurate and robust polarization navigation. OPTICS EXPRESS 2024; 32:1357-1370. [PMID: 38297690 DOI: 10.1364/oe.510283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
Skylight polarization, inspired by the foraging behavior of insects, has been widely used for navigation for various platforms, such as robots, unmanned aerial vehicles, and others, owing to its stability and non-error-accumulation. Among the characteristics of skylight-polarized patterns, the angle of polarization (AOP) and the degree of polarization (DOP) are two of the most significant characteristics that provide abundant information regarding the position of the sun. In this study, we propose an accurate method for detecting the solar meridian for real-time bioinspired navigation through image registration. This method uses the AOP pattern to detect the solar meridian and eliminates the ambiguity between anti-solar meridian and solar meridian using the DOP pattern, resulting in an accurate heading of the observer. Simulation experiments demonstrated the superior performance of the proposed method compared to the alternative approaches. Field experiments demonstrate that the proposed method achieves real-time, robust, and accurate performance under different weather conditions with a root mean square error of 0.1° under a clear sky, 0.18° under an overcast sky with a thin layer of clouds, and 0.32° under an isolated thick cloud cover. Our findings suggest that the proposed method can be potentially used in skylight polarization for real-time and accurate navigation in GPS-denied environments.
Collapse
|
5
|
Wang X, Zhou Y, Gao J. Modeling the celestial distribution of skylight polarization patterns by incorporating the influence of both the sun and the moon through an analytical model. APPLIED OPTICS 2023; 62:6993-6999. [PMID: 37707039 DOI: 10.1364/ao.494843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
The orientation of many polarization-sensitive animals and the hypothetical sky-polarimetric Viking navigation both rely on the polarization pattern of skylight. For 40 years, scientists have attempted to construct various models to simulate this pattern. However, existing theoretical models have only analyzed the polarization pattern of skylight that is influenced separately by the sun or the moon and have built their modeling frameworks based on the position of one light source. This approach fails to account for the combined influence of the sun and the moon on the distribution of skylight polarization patterns at certain times. In fact, ignoring the influence of the moon during the dawn and dusk periods in clear weather conditions may lead to significant errors in the simulation results compared to the measured data. In this paper, we present an analytical model that considers various factors, including skylight intensity, horizon correction factor, atmospheric turbidity condition, and combined influence of both the sun and moon on the distribution of polarized skylight. We believe our model demonstrates enhanced agreement with measured data and will further our understanding of how animals use the celestial polarization pattern for navigation, particularly when both the sun and the moon appear in the sky. Moreover, the findings of this study may facilitate the advancement of bio-inspired navigation systems.
Collapse
|
6
|
Li Q, Dong L, Hu Y, Hao Q, Lv J, Cao J, Cheng Y. Skylight Polarization Pattern Simulator Based on a Virtual-Real-Fusion Framework for Urban Bionic Polarization Navigation. SENSORS (BASEL, SWITZERLAND) 2023; 23:6906. [PMID: 37571690 PMCID: PMC10422526 DOI: 10.3390/s23156906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
In a data-driven context, bionic polarization navigation requires a mass of skylight polarization pattern data with diversity, complete ground truth, and scene information. However, acquiring such data in urban environments, where bionic polarization navigation is widely utilized, remains challenging. In this paper, we proposed a virtual-real-fusion framework of the skylight polarization pattern simulator and provided a data preparation method complementing the existing pure simulation or measurement method. The framework consists of a virtual part simulating the ground truth of skylight polarization pattern, a real part measuring scene information, and a fusion part fusing information of the first two parts according to the imaging projection relationship. To illustrate the framework, we constructed a simulator instance adapted to the urban environment and clear weather and verified it in 174 urban scenes. The results showed that the simulator can provide a mass of diverse urban skylight polarization pattern data with scene information and complete ground truth based on a few practical measurements. Moreover, we released a dataset based on the results and opened our code to facilitate researchers preparing and adapting their datasets to their research targets.
Collapse
Affiliation(s)
| | | | - Yao Hu
- Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Qun Hao
- Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | | | | | | |
Collapse
|
7
|
Li S, Wang R, Dai C, Xu W, Zhan J. Impact of aerosols on the polarization patterns of full-sky background radiation. OPTICS EXPRESS 2023; 31:19918-19930. [PMID: 37381397 DOI: 10.1364/oe.492041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023]
Abstract
Regarding aerosol particle-laded turbid atmospheres, full-sky background radiation polarization patterns can be adversely affected, an important factor limiting their effective near-ground observation and acquisition. We established a multiple-scattering polarization computational model and measurement system and conducted the following three tasks. (a) We thoroughly analyzed the impact of aerosol scattering characteristics on polarization distributions, calculating the degree of polarization (DOP) and angle of polarization (AOP) patterns for a more comprehensive set of atmospheric aerosol compositions and aerosol optical depth (AOD) values than calculated in previous studies. (b) We assessed the uniqueness of the DOP and AOP patterns as a function of AOD. (c) By employing a new polarized radiation acquisition system for measurements, we demonstrated that our computational models are more representative of the DOP and AOP patterns under actual atmospheric conditions. We found that under a clear sky without clouds, the impact of the AOD on the DOP was detectable. With increasing AOD, the DOP decreased, and the decreasing trend became increasingly obvious. When the AOD was above 0.3, the maximum DOP did not exceed 0.5. The AOP pattern did not change notably and remained stable, except for the contraction point at the sun position under an AOD of 2.
Collapse
|
8
|
Liang H, Chua Y, Wang J, Li Q, Yu F, Zhu M, Peng G. Polarized light compass decoding. APPLIED OPTICS 2022; 61:9247-9255. [PMID: 36607060 DOI: 10.1364/ao.473630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
The brains of some insects can encode and decode polarization information and obtain heading angle information. Referring to the encoding ability of insects, exponential function encoding is designed to improve the stability of the polarized light compass artificial neural network. However, in the decoding process, only neurons with the largest activation degree are used for decoding (maximum value decoding), so the heading information contained in other neurons is not used. Therefore, average value decoding (AVD) and weighted AVD are proposed to use the heading information contained in multiple neurons to determine the heading. In addition, concerning the phenomenon of threshold activation of insect neurons, threshold value decoding (TVD) and weighted TVD are proposed, which can effectively eliminate the interference of neurons with low activation. Moreover, this paper proposes to improve the heading determination accuracy of the artificial neural network through pre-training. The simulation and experimental results show that the new, to the best of our knowledge, decoding methods and pre-training can effectively improve the heading determination accuracy of the artificial neural network.
Collapse
|
9
|
Han Y, Li X, Li X, Zhou Z, Li J. Recognition and Detection of Wide Field Bionic Compound Eye Target Based on Cloud Service Network. Front Bioeng Biotechnol 2022; 10:865130. [PMID: 35445001 PMCID: PMC9014010 DOI: 10.3389/fbioe.2022.865130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
In this paper, a multidisciplinary cross-fusion of bionics, robotics, computer vision, and cloud service networks was used as a research platform to study wide-field bionic compound eye target recognition and detection from multiple perspectives. The current research status of wide-field bionic compound-eye target recognition and detection was analyzed, and improvement directions were proposed. The surface microlens array arrangement was designed, and the spaced surface bionic compound eye design principle cloud service network model was established for the adopted spaced-type circumferential hierarchical microlens array arrangement. In order to realize the target localization of the compound eye system, the content of each step of the localization scheme was discussed in detail. The distribution of virtual spherical targets was designed by using the subdivision of the positive icosahedron to ensure the uniformity of the targets. The spot image was pre-processed to achieve spot segmentation. The energy symmetry-based spot center localization algorithm was explored and its localization effect was verified. A suitable spatial interpolation method was selected to establish the mapping relationship between target angle and spot coordinates. An experimental platform of wide-field bionic compound eye target recognition and detection system was acquired. A super-resolution reconstruction algorithm combining pixel rearrangement and an improved iterative inverse projection method was used for image processing. The model was trained and evaluated in terms of detection accuracy, leakage rate, time overhead, and other evaluation indexes, and the test results showed that the cloud service network-based wide-field bionic compound eye target recognition and detection performs well in terms of detection accuracy and leakage rate. Compared with the traditional algorithm, the correct rate of the algorithm was increased by 21.72%. Through the research of this paper, the wide-field bionic compound eye target recognition and detection and cloud service network were organically provide more technical support for the design of wide-field bionic compound eye target recognition and detection system.
Collapse
|
10
|
Liang H, Bai H, Li Z, Cao Y. Polarized light sun position determination artificial neural network. APPLIED OPTICS 2022; 61:1456-1463. [PMID: 35201031 DOI: 10.1364/ao.453177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Our previous work has constructed a polarized light orientation determination (PLOD) artificial neural network. Although a PLOD network can determine the solar azimuth angle, it cannot determine the solar elevation angle. Therefore, this paper proposes an artificial neural network for polarized light solar position determination (PLSPD), which has two branches: the solar azimuth angle determination branch and the solar elevation angle determination branch. Since the solar elevation angle has no cyclic characteristics, and the angle range of the solar elevation angle is different from that of the solar azimuth angle, the solar elevation angle exponential function encoding is redesigned. In addition, compared with the PLOD, the PLSPD deletes a local full connection layer to simplify the network structure. The experimental results show that the PLSPD can determine not only the solar azimuth angle but also the solar elevation angle, and the solar azimuth angle determination accuracy of the PLSPD is higher than that of the PLOD.
Collapse
|
11
|
Wan Z, Zhao K, Li Y, Chu J. Measurement error model of the bio-inspired polarization imaging orientation sensor. OPTICS EXPRESS 2022; 30:22-41. [PMID: 35201192 DOI: 10.1364/oe.442244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
This article studies the measurement error model and calibration method of the bio-inspired polarization imaging orientation sensor (BPIOS), which has important engineering significance for promoting bio-inspired polarization navigation. Firstly, we systematically analyzed the measurement errors in the imaging process of polarized skylight and accurately established an error model of BPIOS based on Stokes vector. Secondly, using the simulated Rayleigh skylight as the incident surface light source, the influence of multi-source factors on the measurement accuracy of BPIOS is quantitatively given for the first time. These simulation results can guide the later calibration of BPIOS. We then proposed a calibration method of BPIOS based on geometric parameters and the Mueller matrix of the optical system and conducted an indoor calibration experiment. Experimental results show that the measurement accuracy of the calibrated BPIOS can reach 0.136°. Finally, the outdoor performance of BPIOS is studied. Outdoor dynamic performance test and field compensation were performed. Outdoor results show that the heading accuracy of BPIOS is 0.667°.
Collapse
|
12
|
Li J, Chu J, Zhang R, Chen J, Wang Y. Bio-inspired attitude measurement method using a polarization skylight and a gravitational field. APPLIED OPTICS 2020; 59:2955-2962. [PMID: 32225849 DOI: 10.1364/ao.387770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
High precision and reliability attitude measurement play an important role in autonomous unmanned navigation. Finding inspiration from desert ants, known as highly efficient navigators who can find their way after foraging for hundreds of meters from their home in hostile environments, we propose an attitude measurement method using polarization skylight and gravitational field. Contrary to the previous method, we utilize three-dimensional polarization vectors and any one-dimensional output of the accelerometers to calculate attitudes. In addition, we designed an accelerometer component selection algorithm, which is to select the one-dimensional component with the minimum motion acceleration from the output of the three-dimensional accelerometer. With this method, even if the carriers remain in a maneuvering state, the motion acceleration of the vehicle will have less impact on the accuracy of attitude measurement. To evaluate the performance of our method, the outdoor experiment was carried out to compare our method with existing traditional methods. Comparison results show that our method has higher measurement accuracy than others and is still applicable in the case of carriers maneuvering in practice under a clear sky.
Collapse
|