1
|
Hu X, Hu Y, Zhang W, Hu J, Li F, Su W, Wu H. Compact dual-parameter sensor design based on a photonic crystal nanobeam cavity with chirped slotted annular holes. APPLIED OPTICS 2023; 62:8593-8599. [PMID: 38037975 DOI: 10.1364/ao.505021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
A compact photonic crystal nanobeam cavity with a 20µm×0.8µm footprint supporting simultaneous air and dielectric resonant modes is proposed for dual-parameter sensing of refractive index and temperature. The structure consists of a row of chirped annular holes and an air-slot etched in an asymmetrical silicon slab. By tapering the lattice period and hole radius, the bands for air and dielectric modes shift in opposite directions, enabling confinement in a single cavity. Numerical simulations determine refractive index sensitivities of 173.59 nm/RIU for the air mode and 286.82 nm/RIU for the dielectric mode. Temperature sensitivities are 69.6 pm/°C and 78.7 pm/°C for the two modes, respectively. The structure demonstrates strong resistance to external interference with refractive index and temperature disturbance resistance coefficients of 2.3×10-5 and 0.07. The high sensitivities in an ultracompact footprint with resistance to crosstalk make this dual-mode nanocavity promising for on-chip biochemical sensing applications.
Collapse
|
2
|
Wang J, Chew SX, Song S, Li L, Nguyen L, Yi X. On-chip simultaneous measurement of humidity and temperature using cascaded photonic crystal microring resonators with error correction. OPTICS EXPRESS 2022; 30:35608-35623. [PMID: 36258508 DOI: 10.1364/oe.466362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
We present the design, fabrication, and characterization of cascaded silicon-on-insulator photonic crystal microring resonators (PhCMRRs) for dual-parameter sensing based on a multiple resonances multiple modes (MRMM) technique. Benefitting from the slow-light effect, the engineered PhCMRRs exhibit unique optical field distributions with different sensitivities via the excitation of dielectric and air modes. The multiple resonances of two distinct modes offer new possibilities for enriching the sensing receptors with additional information about environmental changes while preserving all essential properties of traditional microring resonator based sensors. As a proof of concept, we demonstrate the feasibility of extracting humidity and temperature responses simultaneously with a single spectrum measurement by employing polymethyl methacrylate as the hydrophilic coating, obtaining a relative humidity (RH) sensitivity of 3.36 pm/%RH, 5.57 pm/%RH and a temperature sensitivity of 85.9 pm/°C, 67.1 pm/°C for selected dielectric mode and air mode, respectively. Moreover, the MRMM enriched data further forges the capability to perform mutual cancellation of the measurement error, which improves the sensing performance reflected by the coefficient of determination (R2-value), calculated as 0.97 and 0.99 for RH and temperature sensing results, respectively.
Collapse
|
3
|
Sun F, Yang Y, Li Z, Yang D, Tian H, Lee C. Controlling of spatial modes in multi-mode photonic crystal nanobeam cavity. OPTICS EXPRESS 2022; 30:21764-21773. [PMID: 36224889 DOI: 10.1364/oe.460199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 06/16/2023]
Abstract
We numerically and experimentally present the characteristics of disturbed spatial modes (air mode and dielectric mode) in multi-mode photonic crystal nanobeam cavity (PCNC) in the mid-infrared wavelength range. The results show that the resonance wavelength of the spatial modes can be controlled by modifying the size, period and position of the central periodical mirrors in PCNC, achieving better utilization of the spectrum resource. Additionally, side coupling characteristics of PCNC supporting both air and dielectric modes are investigated for the first time. This work serves as a proof of design method that the spatial modes can be controlled flexibly in PCNC, paving the way to achieve integrated multi-function devices in a limited spectrum range.
Collapse
|
4
|
Gou Z, Wang C, Han Z, Nie T, Tian H. Artificial neural networks assisting the design of a dual-mode photonic crystal nanobeam cavity for simultaneous sensing of the refractive index and temperature. APPLIED OPTICS 2022; 61:4802-4808. [PMID: 36255963 DOI: 10.1364/ao.453818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/07/2022] [Indexed: 06/16/2023]
Abstract
We put forward a dual-mode photonic crystal nanobeam cavity for simultaneous sensing of the refractive index (RI) and temperature (T) designed with the assistance of artificial neural networks (ANNs). We choose the structure of quadratically tapered elliptical holes with a slot to improve the sensitivities of the two modes. To reduce the time consumption of the design, the ANNs are trained to predict the band structure and to inverse design the geometric structure. For the forward prediction and the inverse design neural networks, low mean square errors of 5.1×10-4 and 1.4×10-2 are achieved, respectively. Through a specific design of band properties by the well-trained neural networks, a dual-mode nanobeam sensor with high quality factors of 9.34×104 and 1.55×105 and a small footprint of 23.8×0.7µm2 are designed. The RI and T sensitivities of the air mode are 405 nm/RIU and 40 pm/K, respectively, whereas those of the dielectric mode are 531 nm/RIU and 27 pm/K, respectively. The present work shows significance in further research on the design and applications for dual-mode cavities.
Collapse
|
5
|
Gou Z, Wang C, Yang Y, Han Z, Nie T, Tian H. Artificial neural networks applied in fast-designing ultrabroad bandgap elliptical hole dielectric mode photonic crystal nanobeam cavity. APPLIED OPTICS 2021; 60:8977-8982. [PMID: 34613127 DOI: 10.1364/ao.431719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Artificial neural networks are employed to predict the band structure of the one-dimensional photonic crystal nanobeam, and to inverse-design the geometry structure with on-demand band edges. The data sets generated by 3D finite-difference time-domain based on elliptical-shaped hole nanobeams are used to train the networks and evaluate the networks' accuracy. Based on the well-trained forward prediction and inverse-design network, an ultrabroad bandgap elliptical hole dielectric mode nanobeam cavity is designed. The bandgap achieves 77.7 THz for the center segment of the structure, and the whole designing process takes only 0.73 s. The approach can also be expanded to fast-design elliptical hole air mode nanobeam cavities. The present work is of significance for further research on the application of artificial neural networks in photonic crystal cavities and other optical devices design.
Collapse
|
6
|
Sun F, Dong B, Wei J, Ma Y, Tian H, Lee C. Demonstration of mid-infrared slow light one-dimensional photonic crystal ring resonator with high-order photonic bandgap. OPTICS EXPRESS 2020; 28:30736-30747. [PMID: 33115068 DOI: 10.1364/oe.392677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Integrated mid-infrared sensing offers opportunities for the compact, selective, label-free and non-invasive detection of the absorption fingerprints of many chemical compounds, which is of great scientific and technological importance. To achieve high sensitivity, the key is to boost the interaction between light and analytes. So far, approaches like leveraging the slow light effect, increasing optical path length and enhancing the electric field confinement (f) in the analyte are envisaged. Here, we experimentally investigate a slow light one-dimensional photonic crystal ring resonator operating at high-order photonic bandgap (PBG) in mid-infrared range, which features both strong field confinement in analyte and slow light effect. And the optical path length can also be improved by the resoantor compared with waveguide structure. The characteristics of the first- and second-order bandgap edges are studied by changing the number of patterned periodical holes while keeping other parameters unchanged to confine the bands in the measurement range of our setup between 3.64 and 4.0 µm. Temperature sensitivity of different modes is also experimentally studied, which helps to understand the field confinement. Compared to the fundamental PBG edge modes, the second PBG edge modes show a higher field confinement in the analyte and a comparable group index, leading to larger light-matter interaction. Our work could be used for the design of ultra-sensitive integrated mid-infrared sensors, which have widespread applications including environment monitoring, biosensing and chemical analysis.
Collapse
|
7
|
Yazici MS, Dong B, Hasan D, Sun F, Lee C. Integration of MEMS IR detectors with MIR waveguides for sensing applications. OPTICS EXPRESS 2020; 28:11524-11537. [PMID: 32403662 DOI: 10.1364/oe.381279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Waveguides have been utilized for label-free and miniaturized mid-infrared gas sensors that operate on the evanescent field absorption principle. For integrated systems, photodetectors based on the photocarrier generation principle are previously integrated with waveguides. However, due to the thermal excitation of carriers at room temperature, they suffer from large dark currents and noise in the long-wavelength region. In this paper, we introduce the integration of a MEMS-based broadband infrared thermopile sensor with mid-infrared waveguides via flip-chip bonding technology and demonstrate a proof-of-concept gas (N2O) sensor working at 3.9 µm. A photonic device with input and output grating couplers designed at 3.72 µm was fabricated on a silicon-on-insulator (SOI) platform and integrated with a bare thermopile chip on its output side via flip-chip bonding in order to realize an integrated photonic platform for a myriad range of sensing applications. A responsivity of 69 mV/W was measured at 3.72 µm for an 11 mm waveguide. A second device designed at 3.9 µm has a 1800 ppm resolution for N2O sensing.
Collapse
|
8
|
Ma Y, Dong B, Lee C. Progress of infrared guided-wave nanophotonic sensors and devices. NANO CONVERGENCE 2020; 7:12. [PMID: 32239361 PMCID: PMC7113365 DOI: 10.1186/s40580-020-00222-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/12/2020] [Indexed: 06/01/2023]
Abstract
Nanophotonics, manipulating light-matter interactions at the nanoscale, is an appealing technology for diversified biochemical and physical sensing applications. Guided-wave nanophotonics paves the way to miniaturize the sensors and realize on-chip integration of various photonic components, so as to realize chip-scale sensing systems for the future realization of the Internet of Things which requires the deployment of numerous sensor nodes. Starting from the popular CMOS-compatible silicon nanophotonics in the infrared, many infrared guided-wave nanophotonic sensors have been developed, showing the advantages of high sensitivity, low limit of detection, low crosstalk, strong detection multiplexing capability, immunity to electromagnetic interference, small footprint and low cost. In this review, we provide an overview of the recent progress of research on infrared guided-wave nanophotonic sensors. The sensor configurations, sensing mechanisms, sensing performances, performance improvement strategies, and system integrations are described. Future development directions are also proposed to overcome current technological obstacles toward industrialization.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576 Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608 Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123 China
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576 Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608 Singapore
- NUS Graduate School for Integrative Science and Engineering (NGS), National University of Singapore, Singapore, 117456 Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576 Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608 Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123 China
- NUS Graduate School for Integrative Science and Engineering (NGS), National University of Singapore, Singapore, 117456 Singapore
| |
Collapse
|
9
|
Chang Y, Dong B, Ma Y, Wei J, Ren Z, Lee C. Vernier effect-based tunable mid-infrared sensor using silicon-on-insulator cascaded rings. OPTICS EXPRESS 2020; 28:6251-6260. [PMID: 32225878 DOI: 10.1364/oe.382226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Vernier effect has been captivated as a promising approach to achieve high-performance photonic sensors. However, experimental demonstration of such sensors in mid-infrared (MIR) range, which covers abundant absorption fingerprints of molecules, is still lacking. Here, we report Vernier effect-based thermally tunable photonic sensors using cascaded ring resonators fabricated on the silicon-on-insulator (SOI) platform. The radii and the coupling gaps in two rings are investigated as key design parameters. By applying organic liquids on our device, we observe an envelope shift of 48 nm with a sensitivity of 3000 nm/RIU and an intensity drop of 6.7 dB. Besides, our device can be thermally tuned with a sensitivity of 0.091 nm/mW. Leveraging the characteristic molecular absorption in the MIR, our work offers new possibilities for complex index sensing, which has wide applications in on-chip photonic sensors.
Collapse
|
10
|
Wei J, Li Y, Chang Y, Hasan DMN, Dong B, Ma Y, Qiu CW, Lee C. Ultrasensitive Transmissive Infrared Spectroscopy via Loss Engineering of Metallic Nanoantennas for Compact Devices. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47270-47278. [PMID: 31769956 DOI: 10.1021/acsami.9b18002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Miniaturized infrared spectroscopy is highly desired for widespread applications, including environment monitoring, chemical analysis, and biosensing. Nanoantennas, as a promising approach, feature strong field enhancement and provide opportunities for ultrasensitive molecule detection even in the nanoscale range. However, current efforts for higher sensitivities by nanogaps usually suffer a trade-off between the performance and fabrication cost. Here, novel crooked nanoantennas are designed with a different paradigm based on loss engineering to overcome the above bottleneck. Compared to the commonly used straight nanoantennas, the crooked nanoantennas feature higher sensitivity and a better fabrication tolerance. Molecule signals are increased by 25 times, reaching an experimental enhancement factor of 2.8 × 104. The optimized structure enables a transmissive CO2 sensor with sensitivities up to 0.067% ppm-1. More importantly, such a performance is achieved without sub-100 nm structures, which are common in previous works, enabling compatibility with commercial optical lithography. The mechanism of our design can be explained by the interplay of radiative and absorptive losses of nanoantennas that obeys the coupled-mode theory. Leveraging the advantage of the transmission mode in an optical system, our work paves the way toward cheap, compact, and ultrasensitive infrared spectroscopy.
Collapse
Affiliation(s)
- Jingxuan Wei
- Department of Electrical and Computer Engineering , National University of Singapore , 117583 Singapore
- Center for Intelligent Sensors and MEMS , National University of Singapore , 117608 Singapore
| | - Ying Li
- Department of Electrical and Computer Engineering , National University of Singapore , 117583 Singapore
| | - Yuhua Chang
- Department of Electrical and Computer Engineering , National University of Singapore , 117583 Singapore
- Center for Intelligent Sensors and MEMS , National University of Singapore , 117608 Singapore
| | - Dihan Md Nuruddin Hasan
- Department of Electrical and Computer Engineering , National University of Singapore , 117583 Singapore
- Center for Intelligent Sensors and MEMS , National University of Singapore , 117608 Singapore
- Department of Electrical and Computer Engineering , Northsouth University , Plot, 15, Block B Kuril-NSU Road , Dhaka 1229 , Bangladesh
| | - Bowei Dong
- Department of Electrical and Computer Engineering , National University of Singapore , 117583 Singapore
- Center for Intelligent Sensors and MEMS , National University of Singapore , 117608 Singapore
| | - Yiming Ma
- Department of Electrical and Computer Engineering , National University of Singapore , 117583 Singapore
- Center for Intelligent Sensors and MEMS , National University of Singapore , 117608 Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering , National University of Singapore , 117583 Singapore
- Center for Intelligent Sensors and MEMS , National University of Singapore , 117608 Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering , National University of Singapore , 117583 Singapore
- Center for Intelligent Sensors and MEMS , National University of Singapore , 117608 Singapore
| |
Collapse
|
11
|
Wang Z, Fu Z, Sun F, Wang C, Zhou J, Tian H. Simultaneous sensing of refractive index and temperature based on a three-cavity-coupling photonic crystal sensor. OPTICS EXPRESS 2019; 27:26471-26482. [PMID: 31674528 DOI: 10.1364/oe.27.026471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Healthcare and biosensing have attracted wide attention worldwide, with the development of chip integration technology in recent decades. In terms of compact sensor design with high performance and high accuracy, photonic crystal structures based on Fano resonance offer superior solutions. Here, we design a photonic crystal structure for sensing applications by proposing modeling for a three-cavity-coupling system and derive the transmission expression based on temporal coupled-mode theory (TCMT). The correlations between the structural parameters and the transmission are discussed. Ultimately, the geometry, composed of an air mode cavity, a dielectric mode cavity and a cavity of wide linewidth, is proved to be feasible for simultaneous sensing of refractive index (RI) and temperature (T). For the air mode cavity, the RI and T sensitivities are 523 nm/RIU and 2.5 pm/K, respectively. For the dielectric mode cavity, the RI and T sensitivities are 145 nm/RIU and 60.0 pm/K, respectively. The total footprint of the geometry is only 14 × 2.6 (length × width) µm2. Moreover, the deviation ratios of the proposed sensor are approximately 0.6% and 0.4% for RI and T, respectively. Compared with the researches lately published, the sensor exhibits compact footprint and high accuracy. Therefore, we believe the proposed sensor will contribute to the future compact lab-on-chip detection system design.
Collapse
|