1
|
Zhang R, Song Z, Cao W, Gao G, Yang L, He Y, Han J, Zhang Z, Wang T, Zhu J. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding. LIGHT, SCIENCE & APPLICATIONS 2024; 13:223. [PMID: 39209835 PMCID: PMC11362162 DOI: 10.1038/s41377-024-01541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/15/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
A novel multispectral smart window has been proposed, which features dynamic modulation of light transmittance and effective shielding against electromagnetic microwave radiation. This design integrates liquid crystal dynamic scattering and dye doping techniques, enabling the dual regulation of transmittance and scattering within a single-layer smart window. Additionally, the precise control of conductive film thickness ensures the attainment of robust microwave signal shielding. We present a theoretical model for ion movement in the presence of an alternating electric field, along with a novel approach to manipulate negative dielectric constant. The proposed model successfully enables a rapid transition between light transparent, absorbing and haze states, with an optimum drive frequency adjustable to approximately 300 Hz. Furthermore, the resistive design of the conductive layer effectively mitigates microwave radiation within the 2-18 GHz range. These findings offer an innovative perspective for future advancements in environmental construction.
Collapse
Affiliation(s)
- Ruicong Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Zicheng Song
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| | - Wenxin Cao
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Gang Gao
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Lei Yang
- Research Center of Analysis and Measurement, Harbin Institute of Technology, Harbin, 150080, China
| | - Yurong He
- School of Energy Science & Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiecai Han
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhibo Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| | - Tianyu Wang
- School of Energy Science & Engineering, Harbin Institute of Technology, Harbin, 150080, China.
| | - Jiaqi Zhu
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| |
Collapse
|
2
|
Lin H, Zhao Y, Jiao X, Gao H, Guo Z, Wang D, Luan Y, Wang L. Preparation and Application of Polymer-Dispersed Liquid Crystal Film with Step-Driven Display Capability. Molecules 2024; 29:1109. [PMID: 38474621 DOI: 10.3390/molecules29051109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The realization of multifunctional advanced displays with better electro-optical properties is especially crucial at present. However, conventional integral full drive-based transparent display is increasingly failing to meet the demands of the day. Herein, partitioned polymerization as a novel preparation method was introduced innovatively into polymer-dispersed liquid crystals (PDLC) for realizing a step-driven display in agreement with fluorescent dye to solve the above drawback. At first, the utilization of fluorescent dye to endow the PDLC film with fluorescent properties resulted in a reduction in the saturation voltage of the PDLC from 39.7 V to 25.5 V and an increase in the contrast ratio from 58.4 to 96.6. Meanwhile, the experimental observations and theoretical considerations have elucidated that variation in microscopic pore size can significantly influence the electro-optical behavior of PDLC. Then, the step-driven PDLC film was fabricated through the exposure of different regions of the LC cell to different UV-light intensities, resulting in stepwise voltage-transmittance (V-T) responses of the PDLC film for the corresponding regions. Consequently, under appropriate driving voltages, the PDLC can realize three different states of total scattering, semi-transparent and total transparent, respectively. In addition, the PDLC film also embodied an outstanding anti-aging property and UV-shielding performance, which makes it fascinating for multifunctional advanced display applications.
Collapse
Affiliation(s)
- Hui Lin
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Xiangke Jiao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Hong Gao
- Division of Material Engineering, China Academy of Space Technology, Beijing 100094, China
| | - Zhun Guo
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Luan
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Wang
- Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Zhang R, Zhang Z, Han J, Yang L, Li J, Song Z, Wang T, Zhu J. Advanced liquid crystal-based switchable optical devices for light protection applications: principles and strategies. LIGHT, SCIENCE & APPLICATIONS 2023; 12:11. [PMID: 36593244 PMCID: PMC9807646 DOI: 10.1038/s41377-022-01032-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/18/2022] [Accepted: 11/01/2022] [Indexed: 05/14/2023]
Abstract
With the development of optical technologies, transparent materials that provide protection from light have received considerable attention from scholars. As important channels for external light, windows play a vital role in the regulation of light in buildings, vehicles, and aircrafts. There is a need for windows with switchable optical properties to prevent or attenuate damage or interference to the human eye and light-sensitive instruments by inappropriate optical radiation. In this context, liquid crystals (LCs), owing to their rich responsiveness and unique optical properties, have been considered among the best candidates for advanced light protection materials. In this review, we provide an overview of advances in research on LC-based methods for protection against light. First, we introduce the characteristics of different light sources and their protection requirements. Second, we introduce several classes of light modulation principles based on liquid crystal materials and demonstrate the feasibility of using them for light protection. In addition, we discuss current light protection strategies based on liquid crystal materials for different applications. Finally, we discuss the problems and shortcomings of current strategies. We propose several suggestions for the development of liquid crystal materials in the field of light protection.
Collapse
Affiliation(s)
- Ruicong Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhibo Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Lei Yang
- Research Center of Analysis and Measurement, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiajun Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Zicheng Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Tianyu Wang
- School of Energy Science & Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China.
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin, 150080, China.
| |
Collapse
|
4
|
Salah MB, Nasri R, Alharbi AN, Althagafi TM, Soltani T. Thermotropic liquid crystal doped with ferroelectric nanoparticles: Electrical behavior and ion trapping phenomenon. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Chen X, Wu W, Liu L, Hao J, Dong S. DNA-involved thermotropic liquid crystals from catanionic vesicles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Yuan Y, Xie J, Ma Y, Luo D, Fan F, Wen S. Low-voltage-driven liquid crystal scattering-controllable device based on defects from rapidly varying boundary. OPTICS LETTERS 2022; 47:957-960. [PMID: 35167568 DOI: 10.1364/ol.450620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In this work, we disclose a method to fabricate an electronically tunable liquid crystal (LC) device that can switch between scattering and transparent state. The light scattering domain is attributed to defects from a rapidly varying boundary based on planar random photo-alignment. Distinct from the LC/polymer composite or haze-control LC elements based on patterned electrodes or a well-designed mask, there is no requirement for a complicated process or other auxiliary additives, as only positive dielectric nematic LCs are required. The device exhibits low driving voltage, small power consumption, and good ability to hide images, where the transparent state only needs a supply of 10 Vrms to offer 7.8% of haze, while with 1.1 Vrms, the device provides 58.7% of haze. The good performance and simple fabrication process reveal enormous promising applications in energy-conservation building, privacy protection, and transparent display.
Collapse
|
7
|
Garbovskiy Y. Conventional and unconventional ionic phenomena in tunable soft materials made of liquid crystals and nanoparticles. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abe652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
A great variety of tunable multifunctional materials can be produced by combining nanoparticles and liquid crystals. Typically, the tunability of such soft nanocomposites is achieved via external electric fields resulting in the field-induced reorientation of liquid crystals. This reorientation can be altered by ions normally present in liquid crystals in small quantities. In addition, nanomaterials dispersed in liquid crystals can also affect the behavior of ions. Therefore, an understanding of ionic phenomena in liquid crystals doped with nanoparticles is essential for future advances in liquid crystal-aided nanoscience and nanotechnology. This paper provides an overview of the ionic effects observed in liquid crystals doped with nanomaterials. An introduction to liquid crystals is followed by a brief overview of nanomaterials in liquid crystals. After giving a basic description of ions in liquid crystals and experimental methods to measure them, a wide range of ionic phenomena in liquid crystals doped with different types of nanomaterials is discussed. After that, both existing and emerging applications of tunable soft materials made of liquid crystals and nanodopants are presented with an emphasis on the role of ionic effects in such systems. Finally, the discussion of unsolved problems and future research directions completes the review.
Collapse
|
8
|
Solodkov NV, Saxena A, Jones JC. Electrically Driven Rotation and Nonreciprocal Motion of Microparticles in Nematic Liquid Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003352. [PMID: 32893438 DOI: 10.1002/smll.202003352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Dispersion of microparticles in nematic liquid crystals offers a novel means for controlling both their orientation and position through the combination of topology and external stimuli. Here, cuboidal and triangular prism shaped microparticles in parallel plate capacitor cells filled with a nematic liquid crystal are studied. Experimental observations are compared with numerical simulations to show that the optimal orientation of the particles is determined by their aspect rations, the relative separation gap of their containers and the applied voltage. It is observed that in systems that allow unrestricted particle rotation, the long axes of the particles are able to fully align themselves with the external electric field. However, when particle rotation is geometrically restricted, it is found that increasing the voltage past a critical value causes the short axis of the particle to realign with the electric field due to anchoring breaking. It is shown that symmetry of the particles then plays a key role in their dynamics following the removal of the electric field, allowing the triangular prisms to travel perpendicular to the applied electric field, whereas only rotation is possible for the cuboidal particles.
Collapse
Affiliation(s)
- Nikita V Solodkov
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Antariksh Saxena
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - J Cliff Jones
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Kizhakidathazhath R, Nishikawa H, Okumura Y, Higuchi H, Kikuchi H. High-Performance Polymer Dispersed Liquid Crystal Enabled by Uniquely Designed Acrylate Monomer. Polymers (Basel) 2020; 12:E1625. [PMID: 32707769 PMCID: PMC7466073 DOI: 10.3390/polym12081625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 01/19/2023] Open
Abstract
The widespread electro-optical applications of polymer dispersed liquid crystals (PDLCs) are hampered by their high-driving voltage. Attempts to fabricate PDLC devices with low driving voltage sacrifice other desirable features of PDLCs. There is thus a clear need to develop a method to reduce the driving voltage without diminishing other revolutionary features of PDLCs. Herein, we report a low-voltage driven PDLC system achieved through an elegantly simple and uniquely designed acrylate monomer (A3DA) featuring a benzene moiety with a dodecyl terminal chain. The PDLC films were fabricated by the photopolymerization of mono- and di-functional acrylate monomers (19.2 wt%) mixed in a nematic liquid crystal E7 (80 wt%). The PDLC film with A3DA exhibited an abrupt decline of driving voltage by 75% (0.55 V/μm) with a high contrast ratio (16.82) while maintaining other electro-optical properties almost the same as the reference cell. The response time was adjusted to satisfactory by tuning the monomer concentration while maintaining the voltage significantly low (3 ms for a voltage of 0.98 V/μm). Confocal laser scanning microscopy confirmed the polyhedral foam texture morphology with an average mesh size of approximately 2.6 μm, which is less in comparison with the mesh size of reference PDLC (3.4 μm), yet the A3DA-PDLC showed low switching voltage. Thus, the promoted electro-optical properties are believed to be originated from the unique polymer networks formed by A3DA and its weak anchoring behavior on LCs. The present system with such a huge reduction in driving voltage and enhanced electro-optical performance opens up an excellent way for abundant perspective applications of PDLCs.
Collapse
Affiliation(s)
| | | | | | | | - Hirotsugu Kikuchi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan; (H.N.); (Y.O.); (H.H.)
| |
Collapse
|
10
|
On the Analogy between Electrolytes and Ion-Generating Nanomaterials in Liquid Crystals. NANOMATERIALS 2020; 10:nano10030403. [PMID: 32106491 PMCID: PMC7152844 DOI: 10.3390/nano10030403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
Nanomaterials in liquid crystals are a hot topic of contemporary liquid crystal research. An understanding of the possible effects of nanodopants on the properties of liquid crystals is critical for the development of novel mesogenic materials with improved functionalities. This paper focuses on the electrical behavior of contaminated nanoparticles in liquid crystals. More specifically, an analogy between electrolytes and ion-generating nanomaterials in liquid crystals is established. The physical consequences of this analogy are analyzed. Under comparable conditions, the number of ions generated by nanomaterials in liquid crystals can be substantially greater than the number of ions generated by electrolytes of similar concentration.
Collapse
|
11
|
Hu X, Zhang X, Yang W, Jiang X, Jiang X, Haan LT, Yuan D, Zhao W, Zheng N, Jin M, Shui L, Schenning APHJ, Zhou G. Stable and scalable smart window based on polymer stabilized liquid crystals. J Appl Polym Sci 2020. [DOI: 10.1002/app.48917] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaowen Hu
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM) and National Center for International Research on Green Optoelectronics, South China Academy of Advanced OptoelectronicsSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Xinmin Zhang
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM) and National Center for International Research on Green Optoelectronics, South China Academy of Advanced OptoelectronicsSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Wenmin Yang
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM) and National Center for International Research on Green Optoelectronics, South China Academy of Advanced OptoelectronicsSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Xiao‐Fang Jiang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Xinshuai Jiang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Laurens T. Haan
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM) and National Center for International Research on Green Optoelectronics, South China Academy of Advanced OptoelectronicsSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Dong Yuan
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM) and National Center for International Research on Green Optoelectronics, South China Academy of Advanced OptoelectronicsSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Wei Zhao
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM) and National Center for International Research on Green Optoelectronics, South China Academy of Advanced OptoelectronicsSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Nan Zheng
- State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 People's Republic of China
| | - Mingliang Jin
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Lingling Shui
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Albertus P. H. J. Schenning
- Chemical Engineering and Chemistry, Functional Organic Materials and DevicesEindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Guofu Zhou
- SCNU‐TUE Joint Lab of Device Integrated Responsive Materials (DIRM) and National Center for International Research on Green Optoelectronics, South China Academy of Advanced OptoelectronicsSouth China Normal University Guangzhou 510006 People's Republic of China
- Shenzhen Guohua Optoelectronics Technology Co., Ltd. Shenzhen 518110 People's Republic of China
| |
Collapse
|