1
|
Zarei M, Li M, Medvedeva EE, Sharma S, Kim J, Shao Z, Walker SB, LeMieux M, Liu Q, Leu PW. Flexible Embedded Metal Meshes by Sputter-Free Crack Lithography for Transparent Electrodes and Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6382-6393. [PMID: 38279914 PMCID: PMC10859897 DOI: 10.1021/acsami.3c16405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/29/2024]
Abstract
A facile and novel fabrication method is demonstrated for creating flexible poly(ethylene terephthalate) (PET)-embedded silver meshes using crack lithography, reactive ion etching (RIE), and reactive silver ink. The crack width and spacing in a waterborne acrylic emulsion polymer are controlled by the thickness of the polymer and the applied stress due to heating and evaporation. Our innovative fabrication technique eliminates the need for sputtering and ensures stronger adhesion of the metal meshes to the PET substrate. Crack trench depths over 5 μm and line widths under 5 μm have been achieved. As a transparent electrode, our flexible embedded Ag meshes exhibit a visible transmission of 91.3% and sheet resistance of 0.54 Ω/sq as well as 93.7% and 1.4 Ω/sq. This performance corresponds to figures of merit (σDC/σOP) of 7500 and 4070, respectively. For transparent electromagnetic interference (EMI) shielding, the metal meshes achieve a shielding efficiency (SE) of 42 dB with 91.3% visible transmission and an EMI SE of 37.4 dB with 93.7% visible transmission. We demonstrate the highest transparent electrode performance of crack lithography approaches in the literature and the highest flexible transparent EMI shielding performance of all fabrication approaches in the literature. These metal meshes may have applications in transparent electrodes, EMI shielding, solar cells, and organic light-emitting diodes.
Collapse
Affiliation(s)
- Mehdi Zarei
- Department
of Mechanical Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mingxuan Li
- Department
of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Elizabeth E. Medvedeva
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sooraj Sharma
- Department
of Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jungtaek Kim
- Department
of Industrial Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zefan Shao
- Department
of Mechanical Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - S. Brett Walker
- Electroninks
Incorporated, Austin, Texas 78744, United States
| | - Melbs LeMieux
- Electroninks
Incorporated, Austin, Texas 78744, United States
| | - Qihan Liu
- Department
of Mechanical Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Paul W. Leu
- Department
of Mechanical Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Industrial Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
2
|
Chen Z, Yang S, Huang J, Gu Y, Huang W, Liu S, Lin Z, Zeng Z, Hu Y, Chen Z, Yang B, Gui X. Flexible, Transparent and Conductive Metal Mesh Films with Ultra-High FoM for Stretchable Heating and Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2024; 16:92. [PMID: 38252258 PMCID: PMC10803711 DOI: 10.1007/s40820-023-01295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/21/2023] [Indexed: 01/23/2024]
Abstract
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference (EMI) shielding, achieving a flexible EMI shielding film, while maintaining a high transmittance remains a significant challenge. Herein, a flexible, transparent, and conductive copper (Cu) metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique. The Cu mesh film shows an ultra-low sheet resistance (0.18 Ω □-1), high transmittance (85.8%@550 nm), and ultra-high figure of merit (> 13,000). It also has satisfactory stretchability and mechanical stability, with a resistance increases of only 1.3% after 1,000 bending cycles. As a stretchable heater (ε > 30%), the saturation temperature of the film can reach over 110 °C within 60 s at 1.00 V applied voltage. Moreover, the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5 μm. As a demonstration, it is used as a transparent window for shielding the wireless communication electromagnetic waves. Therefore, the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.
Collapse
Affiliation(s)
- Zibo Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shaodian Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Junhua Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yifan Gu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Weibo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shaoyong Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhiqiang Lin
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Zhiping Zeng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yougen Hu
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Zimin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Boru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
3
|
Chung SI, Kang TW, Kim PK, Ha TG, Hong YP. Highly Transparent Ka-/W-Band Electromagnetic Shielding Films Based on Double-Layered Metal Meshes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56612-56622. [PMID: 37988133 DOI: 10.1021/acsami.3c14788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
An electromagnetic (EM) wave-shielding film exhibiting high performance in high-frequency bands, such as the Ka- and W-bands, was fabricated by using double-layered metal meshes. The double-layered shielding (DLS) film consists of metallic micromesh and nanomesh electrodes (NMEs) on the upper and lower surfaces of a poly(ethylene terephthalate) (PET) film, respectively. The micromesh electrodes (MMEs) were fabricated such that they possessed a thickness higher than the line width, and they thus exhibited excellent electromagnetic wave-shielding performance in addition to optical transmittance. Moreover, the nanomesh electrodes helped prevent the deterioration of the shielding performance owing to the increase in frequency, which was possible by decreasing the aperture size of the mesh-type electrodes. The shielding effectiveness (SE) of the double-layered metal-mesh film was evaluated by using a shielding measurement system that is optimized for high frequencies. In addition, optical transmittance and flexibility tests were conducted. The results confirm that the double-layered shielding film exhibited a shielding effectiveness of more than 50 dB at an optical transmittance of 90% and a stable bending resistance of up to 5000 cycles at a radius of curvature of 6 mm. Double-layered metal-mesh films with such excellent performance are expected to be widely used in diverse applications such as the automobile, medical, and military industries.
Collapse
Affiliation(s)
- Sung-Il Chung
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Republic of Korea
| | - Tae-Weon Kang
- Electromagnetic Wave Metrology Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Pan Kyeom Kim
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Republic of Korea
| | - Tae-Gyu Ha
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Republic of Korea
| | - Young-Pyo Hong
- Electromagnetic Wave Metrology Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Chen L, Khan A, Dai S, Bermak A, Li W. Metallic Micro-Nano Network-Based Soft Transparent Electrodes: Materials, Processes, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302858. [PMID: 37890452 PMCID: PMC10724424 DOI: 10.1002/advs.202302858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/29/2023] [Indexed: 10/29/2023]
Abstract
Soft transparent electrodes (TEs) have received tremendous interest from academia and industry due to the rapid development of lightweight, transparent soft electronics. Metallic micro-nano networks (MMNNs) are a class of promising soft TEs that exhibit excellent optical and electrical properties, including low sheet resistance and high optical transmittance, as well as superior mechanical properties such as softness, robustness, and desirable stability. They are genuinely interesting alternatives to conventional conductive metal oxides, which are expensive to fabricate and have limited flexibility on soft surfaces. This review summarizes state-of-the-art research developments in MMNN-based soft TEs in terms of performance specifications, fabrication methods, and application areas. The review describes the implementation of MMNN-based soft TEs in optoelectronics, bioelectronics, tactile sensors, energy storage devices, and other applications. Finally, it presents a perspective on the technical difficulties and potential future possibilities for MMNN-based TE development.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Department of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Arshad Khan
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Shuqin Dai
- Department School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Amine Bermak
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Wen‐Di Li
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
| |
Collapse
|
5
|
Wang H, Zheng D, Zhang Y, Han L, Cao Z, Lu Z, Tan J. High-Performance Transparent Ultrabroadband Electromagnetic Radiation Shielding from Microwave toward Terahertz. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49487-49499. [PMID: 37816124 DOI: 10.1021/acsami.3c10474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
In the era of fifth-generation networks and Internet-of-Things, the use of multiband electromagnetic radiation shielding is highly desirable for next-generation electronic devices. Herein, we report a systematic exploration of optoelectronic behaviors of ultrathin-silver-based shielding prototype (USP) film structures at the nanometer scale, unlocking the transparent ultrabroadband electromagnetic interference (EMI) shielding from microwave to terahertz frequencies. A theoretical model is proposed to optimize USP structures to achieve increased transparency, whereby optical antireflection resonances are introduced in dielectrics in conjunction with remarkable EMI shielding capability. USP can realize a state-of-the-art effective electromagnetic radiation shielding bandwidth with measured frequencies from 8 GHz up to 2 THz. Experimental results show that a basic USP (dAg = 10 nm) offers an average shielding efficiency of ∼27.5 dB from the X- to Ka-bands (8-40 GHz) and maintains a stable shielding performance of ∼22.6 dB across a broad range of 0.5-2 THz, with a measured optical transmittance of ∼95.2%. This extraordinary performance of ultrathin-silver-based film structures provides a new ultrabroadband EMI shielding paradigm for potential applications in next-generation electronics.
Collapse
Affiliation(s)
- Heyan Wang
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Danni Zheng
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Yilei Zhang
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Lin Han
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Zhibo Cao
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Zhengang Lu
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Jiubin Tan
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| |
Collapse
|
6
|
Tarasevich YY, Eserkepov AV, Vodolazskaya IV. Electrical conductivity of crack-template-based transparent conductive films: A computational point of view. Phys Rev E 2023; 108:044143. [PMID: 37978687 DOI: 10.1103/physreve.108.044143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Crack-template-based transparent conductive films (TCFs) are promising kinds of junction-free, metallic network electrodes that can be used, e.g., for transparent electromagnetic interference shielding. Using image processing of published photos of TCFs, we have analyzed the topological and geometrical properties of such crack templates. Additionally, we analyzed the topological and geometrical properties of some computer-generated networks. We computed the electrical conductance of such networks against the number density of their cracks. Comparison of these computations with predictions of the two analytical approaches revealed the proportionality of the electrical conductance to the square root of the number density of the cracks was found, this being consistent with the theoretical predictions.
Collapse
Affiliation(s)
- Yuri Yu Tarasevich
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| | - Andrei V Eserkepov
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| | - Irina V Vodolazskaya
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| |
Collapse
|
7
|
Liao D, Zheng Y, Ma X, Fu Y. Honeycomb-ring hybrid random mesh design with electromagnetic interference (EMI) shielding for low stray light. OPTICS EXPRESS 2023; 31:32200-32213. [PMID: 37859028 DOI: 10.1364/oe.500407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/19/2023] [Indexed: 10/21/2023]
Abstract
A honeycomb-ring hybrid random mesh structure is designed to achieve low stray light performance. The honeycomb-ring hybrid random mesh comprises the random honeycomb and random ring, achieving two random superpositions in the structure distribution. The stray light distribution is very low by the combination design with different random hybrid structures. In order to illustrate the advantages of the hybrid random structure, we design a random honeycomb network by randomly offsetting vertices. At the same time, for the random honeycomb structure, we replace each vertex with the ring structure with the size of the ring randomly controlled. Thus, the corresponding honeycomb-ring hybrid random structure is obtained. Compared with the random honeycomb, the maximal normalized high-order diffraction energy of the honeycomb-ring hybrid random mesh is about a 62.85% drop, and the shielding performance is increased by about 50%. At the same time, the optical transmittance remains nearly unchanged. Due to the enjoyable property of the designed honeycomb-ring hybrid random mesh, a sample was prepared for performance verification. The measurement results show that it achieves eminent diffraction pattern distribution with the maximal normalized high-order diffraction energy of about -31.8 dB. At the same time, the average optical transmittance exceeds 86%, and the electromagnetic shielding effectiveness (SE) in the Ku band is greater than 26 dB. Based on the fine photoelectric performance of the honeycomb-ring hybrid random mesh structure, it has great application potential for high-quality optical windows.
Collapse
|
8
|
Nan Z, Wei W, Lin Z, Chang J, Hao Y. Flexible Nanocomposite Conductors for Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 15:172. [PMID: 37420119 PMCID: PMC10328908 DOI: 10.1007/s40820-023-01122-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 07/09/2023]
Abstract
HIGHLIGHTS Convincing candidates of flexible (stretchable/compressible) electromagnetic interference shielding nanocomposites are discussed in detail from the views of fabrication, mechanical elasticity and shielding performance. Detailed summary of the relationship between deformation of materials and electromagnetic shielding performance. The future directions and challenges in developing flexible (particularly elastic) shielding nanocomposites are highlighted. With the extensive use of electronic communication technology in integrated circuit systems and wearable devices, electromagnetic interference (EMI) has increased dramatically. The shortcomings of conventional rigid EMI shielding materials include high brittleness, poor comfort, and unsuitability for conforming and deformable applications. Hitherto, flexible (particularly elastic) nanocomposites have attracted enormous interest due to their excellent deformability. However, the current flexible shielding nanocomposites present low mechanical stability and resilience, relatively poor EMI shielding performance, and limited multifunctionality. Herein, the advances in low-dimensional EMI shielding nanomaterials-based elastomers are outlined and a selection of the most remarkable examples is discussed. And the corresponding modification strategies and deformability performance are summarized. Finally, expectations for this quickly increasing sector are discussed, as well as future challenges.
Collapse
Affiliation(s)
- Ze Nan
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| | - Wei Wei
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
- Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
| | - Zhenhua Lin
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| | - Jingjing Chang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
- Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
| | - Yue Hao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| |
Collapse
|
9
|
Li H, Yin Z, Zhang C, Zhang Y, Deng R, Dong H, Wang S, Zhang L. Fabry-Perot resonance-suppressed double-layer metal mesh window for electromagnetic interference shielding. OPTICS LETTERS 2022; 47:5393-5396. [PMID: 36240371 DOI: 10.1364/ol.474330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Traditional electromagnetic interference shielding windows that can simultaneously reflect microwaves and transmit visible light are usually fabricated by depositing one metal mesh layer on the surface of the window. However, such a structure always suffers from strong Fabry-Perot resonance (FPR), which leads to the decline of shielding effectiveness (SE). Here, we analyze the mechanism of FPR from a perspective of the equivalent circuit model and further report a facile approach to minimize the FPR by depositing another high-resistance mesh layer on the back side of the shielding window, which can greatly reduce reflected waves, ensuring that interference cannot be formed. Simulation results prove that FPR can be effectively eliminated by the proposed method, and experiments further show that for a shielding window made with Schott B270 glass plate, the SE can be enhanced by 6.3 dB (76.6% energy attenuation) at declining points, while transmittance is only reduced by 1.6%.
Collapse
|
10
|
Li M, McCourt MJ, Galante AJ, Leu PW. Bayesian optimization of nanophotonic electromagnetic shielding with very high visible transparency. OPTICS EXPRESS 2022; 30:33182-33194. [PMID: 36242364 DOI: 10.1364/oe.468843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Transparent electromagnetic interference (EMI) shielding is needed in many optoelectronic applications to protect electronic devices from surrounding radiation while allowing for high visible light transmission. However, very high transmission (over 92.5%), high EMI shielding efficiency (over 30 dB) structures have yet to be achieved in the literature. Bayesian optimization is used to optimize different nanophotonic structures for high EMI shielding efficiency (SE) and high visible light transmission (T¯ v i s ). Below 90% average visible light transmission, sandwich structures consisting of high index dielectric/silver/high index dielectric films are determined to be optimal, where they are able to achieve 43.1 dB SE and 90.0% T¯ v i s . The high index of refraction dielectric layers reduce absorption losses in the silver and can be engineered to provide for antireflection through destructive interference. However, for optimal EMI shielding with T¯ v i s above 90%, the reflection losses at the air/dielectric interfaces need to be further reduced. Optimized double sided nanocone sandwich structures are determined to be best where they can achieve 41.2 dB SE and 90.8% T¯ v i s as well as 35.6 dB SE and 95.1% T¯ v i s . K-means clustering is utilized to show the performance of characteristic near-Pareto optimal structures. Double sided nanocone structures are shown to exhibit omnidirectional visible transmission with SE = 35.6 dB and over 85% T¯ v i s at incidence angles of 70 ∘.
Collapse
|
11
|
Osipkov A, Makeev M, Konopleva E, Kudrina N, Gorobinskiy L, Mikhalev P, Ryzhenko D, Yurkov G. Optically Transparent and Highly Conductive Electrodes for Acousto-Optical Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7178. [PMID: 34885331 PMCID: PMC8658282 DOI: 10.3390/ma14237178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
The study was devoted to the creation of transparent electrodes based on highly conductive mesh structures. The analysis and reasonable choice of technological approaches to the production of such materials with a high Q factor (the ratio of transparency and electrical conductivity) were carried out. The developed manufacturing technology consists of the formation of grooves in a transparent substrate by photolithography methods, followed by reactive ion plasma etching and their metallization by chemical deposition using the silver mirror reaction. Experimental samples of a transparent electrode fabricated using this technology have a sheet resistance of about 0.1 Ω/sq with a light transmittance in the visible wavelength range of more than 60%.
Collapse
Affiliation(s)
- Alexey Osipkov
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Mstislav Makeev
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Elizaveta Konopleva
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Natalia Kudrina
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Leonid Gorobinskiy
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Pavel Mikhalev
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Dmitriy Ryzhenko
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Gleb Yurkov
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
12
|
Liu J, Zhang Y, Cheng W, Lei S, Song L, Wang B, Hu Y. Anti-Fogging, Frost-Resistant transparent and flexible silver Nanowire-Ti 3C 2T x MXene based composite films for excellent electromagnetic interference shielding ability. J Colloid Interface Sci 2021; 608:2493-2504. [PMID: 34785055 DOI: 10.1016/j.jcis.2021.10.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023]
Abstract
The development of electronics proposes higher requirements for flexible, transparent, and conductive materials with high electromagnetic shielding performance in viewing windows. Flexible transparent films have been fabricated by collaborating one-dimensional silver nanowires (AgNWs) and novel two-dimensional Ti3C2Tx MXene sheets on PET films with an external polymeric coating consisting of poly (vinyl alcohol) (PVA) and poly(styrene sulfonate) (PSS). Especially, the combination of different dimensional nanomaterials effectively establishes a conductive network that exhibits a synergistic effect on excellent electromagnetic interference (EMI) shielding performance, which is superior to that of pure AgNW network or Ti3C2Tx network to some extent. By optimizing the AgNWs content (0.05 mg/cm2) and Ti3C2Tx sheets content (0.01 mg/cm2), the PET/AgNW/Ti3C2Tx/PVA-PSS film exhibits a transmittance of 81% and a desirable EMI SE value of 30.5 dB. In addition, the film shows outstanding anti-fogging and frost-resistant properties due to the remarkable water absorption capacity of PVA and PSS on the external surface. Considering its efficiency and simplicity, this transparent conductive film has promising applications in flexible transparent electronic devices and optical related fields.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Zhejiang Sci Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Wenhua Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shijun Lei
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Bibo Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
13
|
Wang H, Sun Y, Zhang Y, Luo B, Cao Z, Liu Y, Lu Z, Tan J. Optically transparent and microwave diffusion coding metasurface by utilizing ultrathin silver films. OPTICS EXPRESS 2021; 29:36430-36441. [PMID: 34809053 DOI: 10.1364/oe.442512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The past few years have witnessed the great success of artificial metamaterials with effective medium parameters to control electromagnetic waves. Herein, we present a scheme to achieve broadband microwave low specular reflection with uniform backward scattering by using a coding metasurface, which is composed of a rational layout of subwavelength coding elements, via an optimization method. We propose coding elements with high transparency based on ultrathin doped silver, which are capable of generating large phase differences (∼180°) over a wide frequency range by designing geometric structures. The electromagnetic diffusion of the coding metasurface originates from the destructive interference of the reflected waves in various directions. Numerical simulations and experimental results demonstrate that low reflection is achieved from 12 to 18 GHz with a high angular insensitivity of up to ±40° for both transverse electric and transverse magnetic polarizations. Furthermore, the excellent visible transparency of the encoding metasurface is promising for various microwave and optical applications such as electronic surveillance, electromagnetic interference shielding, and radar cross-section reduction.
Collapse
|
14
|
Jiang Z, Zhao S, Chen L, Liu YH. Freestanding "core-shell" AgNWs/metallic hybrid mesh electrodes for a highly efficient transparent electromagnetic interference shielding film. OPTICS EXPRESS 2021; 29:18760-18768. [PMID: 34154125 DOI: 10.1364/oe.423369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
We fabricated the freestanding "core-shell" AgNWs/ Ni mesh electrodes by employing AgNWs solution onto the freestanding Ni-mesh. The combination of AgNWs and Ni mesh resulted in higher electrical conductivity, thereby enhancing the electromagnetic interference (EMI) shielding effectiveness (SE). The hybrid freestanding electrode created highly effective transparent and flexible EMI shielding films, featuring an ultrathin thickness (3 µm), the high optical transparency of 93% at 550 nm, and a SE of 41.5 dB in the X-band, which exceeds that of 30 dB for a freestanding Ni-mesh (94%). We showed that the hybrid freestanding AgNWs/Ni-mesh film is a promising high-performance transparent and flexible EMI shielding material that satisfies the requirements for optoelectronic devices.
Collapse
|
15
|
Yuan C, Huang J, Dong Y, Lu Y, Li J, Liu W, Tang G, Zhong S, Song W. Boosting transparent electromagnetic interference shielding by multi-cavity resonances. OPTICS LETTERS 2021; 46:1648-1651. [PMID: 33793508 DOI: 10.1364/ol.421584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
We propose a multi-cavity resonant architecture that is established by employing two opposing ultrathin silver-based films to form a Fabry-Pérot (F-P) cavity and inserting one or two metallic mesh layers in between. Compared with the single F-P cavity, the multi-cavity architecture with one metallic mesh layer experimentally exhibits a ∼37% improvement in the average shielding effectiveness and maintains a transmittance over 80% at 550 nm. A more significant improvement of ∼108% in shielding effectiveness (SE) can be achieved by inserting two metallic mesh layers. The proposed multi-cavity architecture provides a strategy for removal of the hindrance to transparent electromagnetic interference shielding.
Collapse
|
16
|
Highly stretchable large area woven, knitted and robust braided textile based interconnection for stretchable electronics. Sci Rep 2021; 11:4038. [PMID: 33597572 PMCID: PMC7890051 DOI: 10.1038/s41598-021-83480-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
With the rapid development of stretchable and wearable technologies, stretchable interconnection technology also demanded along it. Stretchable interconnections should have high stretchability and stable conductivity for use as an electrode. In addition, to develop to commercialization scale from research scale, a simple fabrication process that can be scaled up, and the stretchable interconnection should be able to be electrically connected to devices or modules directly. To date, printable conductor inks, liquid metals and stretchable structured interconnections have been reported for stretchable interconnections. These approaches have demonstrated high stretchability and conductivity, but in aspect of scale, it is appropriate to apply in micro-scale devices. For requirements of stretchability, conductivity and direct integration into meso- or centimeter-scale electronic devices or modules, here we introduce stretchable interconnections with a textile structure composed of metal fibers. The stretchable woven and knitted textiles show 67% strain and stable conductivity, and the cylindrical textile shows more than 700% strain with high strength. The stretchable textiles were fabricated using a weaving, knitting and braiding machine that can be used to produce textiles without any limit to length or area. These textiles exhibit high and stable conductivity even under deformation, and can be directly integrated into devices or modules by soldering. These high-performance stretchable textiles have great potential for commercial applications.
Collapse
|
17
|
Nepal D, Kennedy WJ, Pachter R, Vaia RA. Toward Architected Nanocomposites: MXenes and Beyond. ACS NANO 2021; 15:21-28. [PMID: 33356122 DOI: 10.1021/acsnano.0c09834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Achieving excellent electromagnetic interference (EMI) shielding combined with mechanical flexibility, optical transparency, and environmental stability is vital for the future of coatings, electrostatic discharge, electronic displays, and wearable and portable electronic devices. Unfortunately, it is challenging to engineer materials with all of these desired properties due to a lack of understanding of the underlying materials physics and structure-property relationships. Nature has provided numerous examples of a combination of properties through precision engineering of hierarchical structures at multiple length scales with selectively chosen ingredients. This inspiration is reflected in a wide range of synthetic architected nanocomposites. In this Perspective, we provide a brief overview of recent advances in the role of hierarchical architectures in MXene-based thin-film nanocomposites in the quest to achieve multiple functionalities, especially focusing on a combination of excellent EMI shielding, transparency, and mechanical robustness. We also discuss key opportunities, challenges, and prospects.
Collapse
Affiliation(s)
- Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 2941 Hobson Way, Dayton, Ohio 45433, United States
| | - W Joshua Kennedy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 2941 Hobson Way, Dayton, Ohio 45433, United States
| | - Ruth Pachter
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 2941 Hobson Way, Dayton, Ohio 45433, United States
| | - Richard A Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 2941 Hobson Way, Dayton, Ohio 45433, United States
| |
Collapse
|
18
|
Shahzad F, Iqbal A, Kim H, Koo CM. 2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002159. [PMID: 33146936 DOI: 10.1002/adma.202002159] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/30/2020] [Indexed: 05/25/2023]
Abstract
Since their discovery in 2011, 2D transition metal carbides, nitrides, and carbonitrides, known as MXenes, have attracted considerable global research interest owing to their outstanding electrical conductivity coupled with light weight, flexibility, transparency, surface chemistry tunability, and easy solution processability. Here, the promising abilities of 2D MXenes, from both experimental and theoretical perspectives, for designing conductive materials for a range of applications, including electromagnetic interference shielding, flexible optoelectronics, sensors, and thermal heaters, are presented.
Collapse
Affiliation(s)
- Faisal Shahzad
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan
| | - Aamir Iqbal
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajungro, 176 Gajung-dong, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyerim Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chong Min Koo
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajungro, 176 Gajung-dong, Yuseong-gu, Daejeon, 34113, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
19
|
Jiang Z, Zhao S, Huang W, Chen L, Liu YH. Embedded flexible and transparent double-layer nickel-mesh for high shielding efficiency. OPTICS EXPRESS 2020; 28:26531-26542. [PMID: 32906925 DOI: 10.1364/oe.401543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
An efficient approach to obtain high shielding effectiveness (SE) in transparent shielding in an optical window field is proposed and demonstrated by fabricating an embedded double-layer metallic mesh (DLMM) comprised of randomly structured Ni meshes on both sides of a flexible substrate, employing a facile and low-cost double-sided nanoimprinting method. The unique nonperiodic random structure contributes to uniform diffraction and eliminates the Moiré fringe generated by double-layer periodic meshes, ensuring high imaging quality for optical applications. The designed DLMM films simultaneously achieve strong shielding in the X-band and high transmittance in the visible spectrum, demonstrating a high transmittance of 88.7% at the 550-nm wavelength and a SE of 46.9 dB at a frequency of 8.2 GHz. An ultra-high SE of 80 dB is achieved at 64.2% transmittance, which reveals the highest reported SE over a metallic mesh for transparent shielding, indicating the high potential for this transparent electromagnetic interference shielding material for practical optical applications.
Collapse
|
20
|
Yang Y, Chen S, Li W, Li P, Ma J, Li B, Zhao X, Ju Z, Chang H, Xiao L, Xu H, Liu Y. Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding. ACS NANO 2020; 14:8754-8765. [PMID: 32538618 DOI: 10.1021/acsnano.0c03337] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durability of MNNs are limiting the practical application of the resulting devices. Here, we report a controllable approach to enhance the conductivity and the stability of MNNs with their transmittance remaining unchanged, in which reduced graphene oxide conformally wrapped silver nanowire networks (AgNW@rGO networks) are synthesized by selective electrodeposition of GO nanosheets on AgNWs followed by a pulsed laser irradiation treatment. Experimental characterizations and finite-difference time-domain simulations indicate that pulsed laser irradiation at a specific wavelength not only reduces the GO but also welds the AgNWs together through a surface plasmon resonance process. As a result, the AgNW@rGO networks exhibit low sheet resistance of 3.3 Ω/□, average transmittance of 91.1%, and good flexibility. Wrapping with rGO improves the maximum electrical heating temperature of the AgNW network transparent heaters due to the effective suppression of the oxidation and the migration of surface silver atoms. In addition, excellent EMI shielding effectiveness of up to 35.5 dB in the 8.2-12.4 GHz frequency range is obtained as a consequence of the combined effects of dual reflection, conduction loss, and multiple dielectric polarization relaxation processes.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Sai Chen
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Wanli Li
- Center for Functional Sensor & Actuator and World Premier International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Ibaraki 3050044, Japan
| | - Peng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jiangang Ma
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Bingsheng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoning Zhao
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhongshi Ju
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Huicong Chang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Lin Xiao
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
21
|
Yuan C, Huang J, Dong Y, Huang X, Lu Y, Li J, Tian T, Liu W, Song W. Record-High Transparent Electromagnetic Interference Shielding Achieved by Simultaneous Microwave Fabry-Pérot Interference and Optical Antireflection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26659-26669. [PMID: 32422036 DOI: 10.1021/acsami.0c05334] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
As a potential risk to human and environmental health, radio frequency (RF) radiation should be studied due to the higher frequencies and larger bandwidths that may be employed. Electromagnetic interference (EMI) shielding materials can prevent exposure to RF radiation, but most of them are visibly opaque. In this work, we propose and fabricate visibly transparent EMI shielding materials using an ultrathin silver layer sandwiched by oxides (SLSO) as building blocks. The samples with a double-sided SLSO (D-SLSO) structure exhibit the highest EMI shielding effectiveness (SE) of 70 dB at 27.6 GHz (>62 dB on average at 4-40 GHz) and a transmittance close to 90% at a visible wavelength of 550 nm, which is comparable with those of polyethylene terephthalate (PET) and glass substrates. The D-SLSO structure plays a dual role: it suppresses optical reflections as antireflection coatings and enhances EMI shielding via Fabry-Pérot interference. In addition, we discuss the origin of the extraordinary frequency dependence of SE, which monotonically increases, contrary to that of conventional metallic mesh. This report describes SLSO-based transparent EMI shielding materials with record-high SE and visible transmittance that provide optoelectronic applications with robust safety and reliability under RF radiation with high and broad frequencies.
Collapse
Affiliation(s)
- Changwei Yuan
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Material Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jinhua Huang
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuxuan Dong
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xianjun Huang
- College of Electronic Science, National University of Defense Technology, Changsha 410072, China
| | - Yuehui Lu
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jia Li
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Tian
- College of Electronic Science, National University of Defense Technology, Changsha 410072, China
| | - Wenqing Liu
- School of Material Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Weijie Song
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou 213164, China
| |
Collapse
|
22
|
Han M, Shuck CE, Rakhmanov R, Parchment D, Anasori B, Koo CM, Friedman G, Gogotsi Y. Beyond Ti 3C 2T x: MXenes for Electromagnetic Interference Shielding. ACS NANO 2020; 14:5008-5016. [PMID: 32163265 DOI: 10.1021/acsnano.0c01312] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
New ultrathin and multifunctional electromagnetic interference (EMI) shielding materials are required for protecting electronics against electromagnetic pollution in the fifth-generation networks and Internet of Things era. Micrometer-thin Ti3C2Tx MXene films have shown the best EMI shielding performance among synthetic materials so far. Yet, the effects of elemental composition, layer structure, and transition-metal arrangement on EMI shielding properties of MXenes have not been explored, despite the fact that more than 30 different MXenes have been reported, and many more are possible. Here, we report on a systematic study of EMI shielding properties of 16 different MXenes, which cover single-metal MXenes, ordered double-metal carbide MXenes, and random solid solution MXenes of M and X elements. This is the largest set of MXene compositions ever reported in a comparative study. Films with thicknesses ranging from nanometers to micrometers were produced by spin-casting, spray-coating, and vacuum-assisted filtration. All MXenes achieved effective EMI shielding (>20 dB) in micrometer-thick films. The EMI shielding effectiveness of sprayed Ti3C2Tx film with a thickness of only ∼40 nm reaches 21 dB. Adjustable EMI shielding properties were achieved in solid solution MXenes with different ratios of elements. A transfer matrix model was shown to fit EMI shielding data for highly conductive MXenes but could not describe the behavior of materials with low conductivity. This work shows that many members of the large MXene family can be used for EMI shielding, contributing to designing ultrathin, flexible, and multifunctional EMI shielding films benefiting from specific characteristics of individual MXenes.
Collapse
Affiliation(s)
- Meikang Han
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia 19104, Pennsylvania, United States
| | - Christopher Eugene Shuck
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia 19104, Pennsylvania, United States
| | - Roman Rakhmanov
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia 19104, Pennsylvania, United States
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia 19104, Pennsylvania, United States
| | - David Parchment
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia 19104, Pennsylvania, United States
| | - Babak Anasori
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia 19104, Pennsylvania, United States
- Department of Mechanical and Energy Engineering, Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis 46202, Indiana, United States
| | - Chong Min Koo
- Materials Architecturing Research Centre, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Gary Friedman
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia 19104, Pennsylvania, United States
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia 19104, Pennsylvania, United States
| |
Collapse
|