1
|
Chen Y, Zheng C, Yang W, Li J, Jin F, Li X, Wang J, Jiang L. Over 200 °C Broad-Temperature Lasers Reconstructed from a Blue-Phase Polymer Scaffold. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206580. [PMID: 36189900 DOI: 10.1002/adma.202206580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Blue-phase liquid crystal (BPLC) lasers have received extensive attention and have potential applications in sensors, displays, and anti-counterfeiting, owing to their unique 3D photonic bandgap. However, the working temperature range of such BPLC lasers is insufficient, and investigations are required to elucidate the underlying mechanism. Herein, a broad-temperature reconstructed laser is successfully achieved in dye-doped polymer-stabilized blue-phase liquid crystals (DD-PSBPLCs) with an unprecedented working temperature range of 25-230 °C based on a robust polymer scaffold, which combines the thermal stability and the tunability from the system. The broad-temperature lasing stems from the high thermal stability of the robust polymerized system used, which affords enough reflected and matched fluorescence signals. The temperature-tunable lasing behavior of the DD-PSBPLCs is associated with the phase transition of the unpolymerized content (≈60 wt%) in the system, which endows with a reconstructed characteristic of BP lasers including a U-shaped lasing threshold, a reversible lasing wavelength, and an obvious lasing enhancement at about 70 °C. This work not only provides a new idea for the design of broad-temperature BPLC lasers, but also sets out important insight in innovative microstructure changes for novel multifunctional organic optic devices.
Collapse
Affiliation(s)
- Yujie Chen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Chenglin Zheng
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Wenjie Yang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Jing Li
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Feng Jin
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiuhong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| |
Collapse
|
2
|
Rouhbakhsh Z, Huang JW, Ho TY, Chen CH. Liquid crystal-based chemical sensors and biosensors: From sensing mechanisms to the variety of analytical targets. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
4
|
Wang Z, Xu T, Noel A, Chen YC, Liu T. Applications of liquid crystals in biosensing. SOFT MATTER 2021; 17:4675-4702. [PMID: 33978639 DOI: 10.1039/d0sm02088e] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Liquid crystals (LCs), as a promising branch of highly-sensitive, quick-response, and low-cost materials, are widely applied to the detection of weak external stimuli and have attracted significant attention. Over the past decade, many research groups have been devoted to developing LC-based biosensors due to their self-assembly potential and functional diversity. In this paper, recent investigations on the design and application of LC-based biosensors are reviewed, based on the phenomenon that the orientation of LCs can be directly influenced by the interactions between biomolecules and LC molecules. The sensing principle of LC-based biosensors, as well as their signal detection by probing interfacial interactions, is described to convert, amplify, and quantify the information from targets into optical and electrical parameters. Furthermore, commonly-used LC biosensing targets are introduced, including glucose, proteins, enzymes, nucleic acids, cells, microorganisms, ions, and other micromolecules that are critical to human health. Due to their self-assembly potential, chemical diversity, and high sensitivity, it has been reported that tunable stimuli-responsive LC biosensors show bright perspectives and high superiorities in biological applications. Finally, challenges and future prospects are discussed for the fabrication and application of LC biosensors to both enhance their performance and to realize their promise in the biosensing industry.
Collapse
Affiliation(s)
- Ziyihui Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | | | | | | | | |
Collapse
|
5
|
Rho D, Breaux C, Kim S. Label-Free Optical Resonator-Based Biosensors. SENSORS 2020; 20:s20205901. [PMID: 33086566 PMCID: PMC7589515 DOI: 10.3390/s20205901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022]
Abstract
The demand for biosensor technology has grown drastically over the last few decades, mainly in disease diagnosis, drug development, and environmental health and safety. Optical resonator-based biosensors have been widely exploited to achieve highly sensitive, rapid, and label-free detection of biological analytes. The advancements in microfluidic and micro/nanofabrication technologies allow them to be miniaturized and simultaneously detect various analytes in a small sample volume. By virtue of these advantages and advancements, the optical resonator-based biosensor is considered a promising platform not only for general medical diagnostics but also for point-of-care applications. This review aims to provide an overview of recent progresses in label-free optical resonator-based biosensors published mostly over the last 5 years. We categorized them into Fabry-Perot interferometer-based and whispering gallery mode-based biosensors. The principles behind each biosensor are concisely introduced, and recent progresses in configurations, materials, test setup, and light confinement methods are described. Finally, the current challenges and future research topics of the optical resonator-based biosensor are discussed.
Collapse
|