1
|
Ma H, Yu Y, Zhu Y, Wu H, Qiu H, Gu Y, Chen Q, Zuo C. Monitoring of microvascular calcification by time-resolved photoacoustic microscopy. PHOTOACOUSTICS 2025; 41:100664. [PMID: 39654983 PMCID: PMC11626619 DOI: 10.1016/j.pacs.2024.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024]
Abstract
Monitoring of microvascular calcification (MC) is essential for the understanding of pathophysiological processes and the characterization of certain physiological states such as drug abuse, metabolic abnormality, and chronic nephrosis. In this work, we develop a novel and effective time-resolved photoacoustic microscopy (TR-PAM) technology, which can observe the obvious microvascular bio-elastic change in the development process of the MC owing to the calcium deposition along vascular walls.The feasibility of the TR-PAM imaging was validated using a group of agar phantoms and ex vivo tissues. Furthermore, MC pathological animal models were constructed and imaged in situ and in vivo by the TR-PAM to demonstrate its capability for the bio-mechanical monitoring and characterization of MC, and experimental results were consistent with the pathological knowledge. The feasibility study of monitoring MC by the TR-PAM proves that this technique has potential to be developed as a superficial microvascular bio-mechanical assessment method to supplement current clinical strategy for prediction and monitoring of some diseases.
Collapse
Affiliation(s)
- Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| | - Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| | - Yahui Zhu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| | - Hongjun Wu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| | - Haixia Qiu
- Department of Laser medicine, the First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- Department of Laser medicine, the First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| |
Collapse
|
2
|
Hosseindokht Z, Davoudi S, Rahdar M, Janahmadi M, Kolahdouz M, Sasanpoour P. Photoacoustic viscoelasticity assessment of prefrontal cortex and cerebellum in normal and prenatal valproic acid-exposed rats. PHOTOACOUSTICS 2024; 36:100590. [PMID: 38318427 PMCID: PMC10839762 DOI: 10.1016/j.pacs.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Mechanical properties of brain tissues are from principal features from different points of view; diagnosis, the performance of the brain and neurological disorders. Particularly viscoelastic properties of the brain tissues are determinative. In this study based on a proposed accurate and non-invasive method, we have measured the viscoelastic properties of prefrontal cortex and cerebellum, two important brain regions involved in motor learning and pathophysiology of autism spectrum disorder (ASD). In this regard, using photoacoustic systems, viscoelastic properties of tissues from the cerebellum and prefrontal cortex of normal and prenatal VPA (Valproic acid)-exposed (i.e. autistic-like) offspring rats are measured. Results of our study show that the cerebellums of normal tissues are stiffer than the tissue obtained from autistic-like rats, while the viscoelasticity of the prefrontal cortex of normal tissues is higher than that of autistic ones. The proposed method for the measurement of viscoelastic properties of the brain tissue has the potential not only for the fundamental studies but as a diagnosis technique.
Collapse
Affiliation(s)
- Zahra Hosseindokht
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Kolahdouz
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Pezhman Sasanpoour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yang F, Chen W, Chen Z. Photoacoustic micro-viscoelastography for mapping mechanocellular properties. JOURNAL OF BIOPHOTONICS 2024; 17:e202300262. [PMID: 37738101 DOI: 10.1002/jbio.202300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Cellular biomechanical properties provide essential insights into biological functions regarding health and disease. Current measurements of the biomechanical properties of cells require physical contact with cells or pre-loading on the cells. Here, we have developed photoacoustic micro-viscoelastography (PAMVE), which utilizes the phase characteristics of photoacoustic (PA) response, for mapping mechanocellular properties in a load-free manner. PAMVE realizes the local viscoelasticity measurement on the macrophages and red blood cells with micrometer scale. Furthermore, PAMVE can successfully identify the adipose cell and skeletal muscle cell due to the difference in their composition-related biomechanical properties. PAMVE represents an irreplaceable option for interrogating characteristic mechanocellular properties, opening the possibility of studying cellular mechanobiology and pathophysiology.
Collapse
Affiliation(s)
- Fen Yang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, China
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wei Chen
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhongjiang Chen
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
5
|
Hui X, Malik MOA, Pramanik M. Looking deep inside tissue with photoacoustic molecular probes: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:070901. [PMID: 36451698 PMCID: PMC9307281 DOI: 10.1117/1.jbo.27.7.070901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 05/19/2023]
Abstract
Significance Deep tissue noninvasive high-resolution imaging with light is challenging due to the high degree of light absorption and scattering in biological tissue. Photoacoustic imaging (PAI) can overcome some of the challenges of pure optical or ultrasound imaging to provide high-resolution deep tissue imaging. However, label-free PAI signals from light absorbing chromophores within the tissue are nonspecific. The use of exogeneous contrast agents (probes) not only enhances the imaging contrast (and imaging depth) but also increases the specificity of PAI by binding only to targeted molecules and often providing signals distinct from the background. Aim We aim to review the current development and future progression of photoacoustic molecular probes/contrast agents. Approach First, PAI and the need for using contrast agents are briefly introduced. Then, the recent development of contrast agents in terms of materials used to construct them is discussed. Then, various probes are discussed based on targeting mechanisms, in vivo molecular imaging applications, multimodal uses, and use in theranostic applications. Results Material combinations are being used to develop highly specific contrast agents. In addition to passive accumulation, probes utilizing activation mechanisms show promise for greater controllability. Several probes also enable concurrent multimodal use with fluorescence, ultrasound, Raman, magnetic resonance imaging, and computed tomography. Finally, targeted probes are also shown to aid localized and molecularly specific photo-induced therapy. Conclusions The development of contrast agents provides a promising prospect for increased contrast, higher imaging depth, and molecularly specific information. Of note are agents that allow for controlled activation, explore other optical windows, and enable multimodal use to overcome some of the shortcomings of label-free PAI.
Collapse
Affiliation(s)
- Xie Hui
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Mohammad O. A. Malik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
6
|
Zhang J, Fan F, Zhu L, Wang C, Chen X, Xinxiao G, Zhu J. Elasticity measurements of ocular anterior and posterior segments using optical coherence elastography. OPTICS EXPRESS 2022; 30:14311-14318. [PMID: 35473177 DOI: 10.1364/oe.456065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The changes of biomechanical properties, especially the elasticity of the ocular tissues, are closely related to some ophthalmic diseases. Currently, the ophthalmic optical coherence elastography (OCE) systems are dedicated either to the anterior segment or to the retina. The elasticity measurements of the whole eye remain challenging. Here we demonstrated an acoustic radiation force optical coherence elastography (ARF-OCE) method to quantify the elasticity of the cornea and the retina. The experiment results show that the Young's moduli of the cornea and the retina were 16.66 ± 6.51 kPa and 207.96 ± 4.75 kPa, respectively. Our method can measure the elasticity of the anterior segment and the posterior segment, and provides a powerful tool to enhance ophthalmology research.
Collapse
|
7
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|