1
|
Luo A, Zheng YG, Zhang WY, He MG, Shen YC, Zhu ZH, Yuan ZS, Pan JW. Microscopic Study on Superexchange Dynamics of Composite Spin-1 Bosons. PHYSICAL REVIEW LETTERS 2024; 133:043401. [PMID: 39121402 DOI: 10.1103/physrevlett.133.043401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/24/2024] [Accepted: 06/18/2024] [Indexed: 08/11/2024]
Abstract
We report on an experimental simulation of the spin-1 Heisenberg model with composite bosons in a one-dimensional chain based on the two-component Bose-Hubbard model. Exploiting our site- and spin-resolved quantum gas microscope, we observed faster superexchange dynamics of the spin-1 system compared to its spin-1/2 counterpart, which is attributed to the enhancement effect of multi-bosons. We further probed the nonequilibrium spin dynamics driven by the superexchange and single-ion anisotropy terms, unveiling the linear expansion of the spin-spin correlations, which is limited by the Lieb-Robinson bound. Based on the superexchange process, we prepared and verified the entangled qutrits pairs with these composite spin-1 bosons, potentially being applied in qutrit-based quantum information processing.
Collapse
|
2
|
Zhang WY, He MG, Sun H, Zheng YG, Liu Y, Luo A, Wang HY, Zhu ZH, Qiu PY, Shen YC, Wang XK, Lin W, Yu ST, Li BC, Xiao B, Li MD, Yang YM, Jiang X, Dai HN, Zhou Y, Ma X, Yuan ZS, Pan JW. Scalable Multipartite Entanglement Created by Spin Exchange in an Optical Lattice. PHYSICAL REVIEW LETTERS 2023; 131:073401. [PMID: 37656862 DOI: 10.1103/physrevlett.131.073401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/30/2023] [Indexed: 09/03/2023]
Abstract
Ultracold atoms in optical lattices form a competitive candidate for quantum computation owing to the excellent coherence properties, the highly parallel operations over spins, and the ultralow entropy achieved in qubit arrays. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale up and detect multipartite entanglement, the basic resource for quantum computation, due to the lack of manipulations over local atomic spins in retroreflected bichromatic superlattices. In this Letter, we realize the functional building blocks in quantum-gate-based architecture by developing a cross-angle spin-dependent optical superlattice for implementing layers of quantum gates over moderately separated atoms incorporated with a quantum gas microscope for single-atom manipulation and detection. Bell states with a fidelity of 95.6(5)% and a lifetime of 2.20±0.13 s are prepared in parallel, and then connected to multipartite entangled states of one-dimensional ten-atom chains and two-dimensional plaquettes of 2×4 atoms. The multipartite entanglement is further verified with full bipartite nonseparability criteria. This offers a new platform toward scalable quantum computation and simulation.
Collapse
Affiliation(s)
- Wei-Yong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Gen He
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hui Sun
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Guang Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ying Liu
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - An Luo
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Han-Yi Wang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Hang Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Pei-Yue Qiu
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ying-Chao Shen
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xuan-Kai Wang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wan Lin
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Song-Tao Yu
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Bin-Chen Li
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Bo Xiao
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Meng-Da Li
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Meng Yang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Jiang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Han-Ning Dai
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - You Zhou
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory for Information Science of Electromagnetic Waves (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Xiongfeng Ma
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen-Sheng Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jian-Wei Pan
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
3
|
Wang XK, Zhou ZY, Li MD, Zheng YG, Zhang WY, Su GX, He MG, Yuan ZS. Low-noise and high-power second harmonic generation of 532 nm laser for trapping ultracold atoms. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:123002. [PMID: 36586898 DOI: 10.1063/5.0117561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Optical lattices for coherently manipulating ultracold atoms demand high-power, low-noise, narrow-line-width, and continuous-wave lasers. Here, we report the implementation of a 30 W 532 nm low-noise laser by second harmonic generation from a 1064 nm fiber laser, which is capable to generate optical lattices for a quantum gas microscope of Rb87 atoms. The overall conversion efficiency is 59% at an input power of 51 W with a lithium triborate crystal coupled to a ring cavity. The relative intensity noise of the output laser is suppressed to -120 dBc/Hz in the range of 10 Hz-100 kHz with a high dynamic range of over 50 dB, which is suitable for long-term trapping and coherent manipulation of the quantum gases.
Collapse
Affiliation(s)
- Xuan-Kai Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhao-Yu Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Meng-Da Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Guang Zheng
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Yong Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Xian Su
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Gen He
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhen-Sheng Yuan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Li MD, Zheng YG, Zhang WY, Wang XK, Xiao B, Zhou ZY, Jiang L, Lian MZ, Yuan ZS, Pan JW. A high-power and low-noise 532-nm continuous-wave laser for quantum gas microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:083202. [PMID: 34470382 DOI: 10.1063/5.0052292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Low-noise, high-power 532-nm lasers are of great interest in many scientific research studies, such as gravitational wave detection and ultracold atom experiments. In particular, in the experiments of quantum gas microscopy, a large power of laser is necessary during the imaging process, while low noise is important for preventing the atoms from being heated up. In this work, we report on the generation of such a 532-nm continuous-wave laser by coherently combining two laser beams produced by single-pass second-harmonic generation. The power of the combined laser is up to 17 W. With the help of intensity stabilization, we are able to suppress the relative intensity noise to below -120 dBc/Hz. The generated laser satisfies the experimental requirements for integrating optical superlattices with a quantum gas microscope.
Collapse
Affiliation(s)
- Meng-Da Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong-Guang Zheng
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei-Yong Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuan-Kai Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bo Xiao
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhao-Yu Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Jiang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Meng-Zhe Lian
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Sheng Yuan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|