1
|
Wang L, Yin Z, Lu T, Yi Y, Dong X, Dai Y, Bu Z, Chen Y, Wang X. 1064 nm rotational Raman polarization lidar for profiling aerosol and cloud characteristics. OPTICS EXPRESS 2024; 32:14963-14977. [PMID: 38859159 DOI: 10.1364/oe.518259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 06/12/2024]
Abstract
The vertical profiles of aerosol or mixed-phase cloud optical properties (e.g. extinction coefficient) at 1064 nm are difficult to obtain from lidar observations. Based on the techniques of rotational Raman signal at 1058 nm described by Haarig et al. [Atmos. Meas. Tech.9, 4269 (2016)10.5194/amt-9-4269-2016], we have developed a novel rotational Raman polarization lidar at 1064 nm at Wuhan University. In this design, we optimized the central wavelength of the rotational Raman channel to 1056 nm with a bandwidth of 6 nm to increase the signal-to-noise ratio and minimize the temperature dependence of the extracted rotational Raman spectrum. And then separated elastic polarization channels (1064 nm Parallel, P and 1064 nm Cross, S) into near range (low 1064 nm P and 1064 nm S) and far range detection channels (high 1064 nm P and 1064 nm S) to extend the dynamic range of lidar observation. Silicon single photon avalanche diodes (SPAD) working at photon counting mode were applied to improve the quantum efficiency and reduce the electronic noise, which resulted in quantum efficiency of 2.5%. With a power of 3 W diode pumped pulsed Nd:YAG laser and aperture of 250 mm Cassegrain telescope, the detectable range can cover the atmosphere from 0.3 km to the top troposphere (about 12-15 km). To the best of our knowledge, the design of this novel lidar system is described and the mixed-phase cloud and aerosol optical properties observations of backscatter coefficients, extinction coefficients, lidar ratio and depolarization ratio at 1064 nm were performed as demonstrations of the system capabilities.
Collapse
|
2
|
Wang Y, Huang Z, Zhou T, Bi J, Shi J. Identification of fluorescent aerosol observed by a spectroscopic lidar over northwest China. OPTICS EXPRESS 2023; 31:22157-22169. [PMID: 37381296 DOI: 10.1364/oe.493557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
Bioaerosols play a significant role in climate change and variation of ecological environment. To investigate characterization of atmospheric bioaerosols, we conducted lidar measurement for observing bioaerosols close to dust sources over northwest China in April, 2014. The developed lidar system can not only allowed us to measure the 32-channel fluorescent spectrum between 343 nm to 526 nm with a spectral resolution of 5.8 nm but also simultaneously detect polarisation measurements at 355 nm and 532 nm, as well as Raman scattering signals at 387 nm and 407 nm. According to the findings, the lidar system was able to pick up the robust fluorescence signal emitted by dust aerosols. Especially the polluted dust, the fluorescence efficiency could reach 0.17. In addition, the efficiency of single-band fluorescence typically rises as the wavelength goes up and the ratio of fluorescence efficiency of polluted dust, dust, air pollutant and background aerosols is about 4:3:8:2. Moreover, our results demonstrate that simultaneous measurements of depolarization at 532 nm and fluorescence could better distinguish fluorescent aerosols than those at 355 nm. This study enhances the ability of laser remote sensing for real-time detecting bioaerosol in the atmosphere.
Collapse
|
3
|
Gao L, Lien FS, Chen H, Chen G, Yang S, Deng J. Backscattering Echo Intensity Characteristics of Laser in Soil Explosion Dust. SENSORS (BASEL, SWITZERLAND) 2023; 23:5638. [PMID: 37420806 DOI: 10.3390/s23125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Soil dust generated by explosions can lead to the absorption and scattering of lasers, resulting in low detection and recognition accuracy for laser-based devices. Field tests to assess laser transmission characteristics in soil explosion dust are dangerous and involve uncontrollable environmental conditions. Instead, we propose using high-speed cameras and an indoor explosion chamber to assess the backscattering echo intensity characteristics of lasers in dust generated by small-scale explosive blasts in soil. We analyzed the influence of the mass of the explosive, depth of burial, and soil moisture content on crater features and temporal and spatial distributions of soil explosion dust. We also measured the backscattering echo intensity of a 905 nm laser at different heights. The results showed that the concentration of soil explosion dust was highest in the first 500 ms. The minimum normalized peak echo voltage ranged from 0.318 to 0.658. The backscattering echo intensity of the laser was found to be strongly correlated with the mean gray value of the monochrome image of soil explosion dust. This study provides experimental data and a theoretical basis for the accurate detection and recognition of lasers in soil explosion dust environments.
Collapse
Affiliation(s)
- Lijuan Gao
- Science and Technology on Electromechanical Dynamic Control Laboratory, Beijing Institute of Technology, Beijing 100081, China
| | - Fue-Sang Lien
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Huimin Chen
- Science and Technology on Electromechanical Dynamic Control Laboratory, Beijing Institute of Technology, Beijing 100081, China
| | - Guang Chen
- Key Laboratory of Traffic Safety on Track, Central South University, Changsha 410083, China
| | - Shangxian Yang
- Beijing Bo Tsing Technology Co., Ltd., Beijing 100176, China
| | - Jiahao Deng
- Science and Technology on Electromechanical Dynamic Control Laboratory, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Huang Z, Li M, Bi J, Shen X, Zhang S, Liu Q. Small lidar ratio of dust aerosol observed by Raman-polarization lidar near desert sources. OPTICS EXPRESS 2023; 31:16909-16919. [PMID: 37157759 DOI: 10.1364/oe.484501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Previous studies have shown that the lidar ratio has a significant influence on the retrieval of the aerosol extinction coefficient via the Fernald method, leading to a large uncertainty in the evaluation of dust radiative forcing. Here, we found that the lidar ratios of dust aerosol were only 18.16 ± 14.23sr, based on Raman-polarization lidar measurements in Dunhuang (94.6°E, 40.1°N) in April of 2022. These ratios are much smaller than other reported results (∼50 sr) for Asian dust. This finding is also confirmed by some previous results from lidar measurements under different conditions for dust aerosols. The particle depolarization ratio (PDR) at 532 nm and color ratio (CR, 1064 nm/532 nm) of dust aerosols are0.28 ± 0.013 and 0.5-0.6, respectively, indicating that extremely fine nonspherical particles exist. In addition, the dust extinction coefficients at 532 nm range from2 × 10-4 to 6 × 10-4m-1for such small lidar ratio particles. Combining lidar measurements and model simulation by the T-matrix method, we further reveal that the reason for this phenomenon is mainly due to the relatively small effective radius and weak light absorption of dust particles. Our study provides a new insight into the wide variation in the lidar ratio for dust aerosols, which helps to better explain the impacts of dust aerosols on the climate and environment.
Collapse
|
5
|
Huang Z, Shen X, Tang S, Zhou T, Dong Q, Zhang S, Li M, Wang Y. Simulated depolarization ratios for dust and smoke at laser wavelengths: implications for lidar application. OPTICS EXPRESS 2023; 31:10541-10553. [PMID: 37157599 DOI: 10.1364/oe.484335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polarization measurements have been widely used to detect aerosol properties by remote sensing in recent decades. To better understand the polarization characteristics of aerosols by lidar, the numerically exact T-matrix method was used to simulate the depolarization ratio (DR) of dust and smoke aerosols at typical laser wavelengths in this study. The results show that the DRs of dust and smoke aerosols have obviously different spectral dependences. Moreover, the ratio of DRs at two wavelengths has an obvious linear relationship with the microphysical properties of aerosols, including aspect ratio, effective radius and complex refractive index. At short wavelengths, we can use it to invert the absorption characteristics of particles, further improving the detection ability of lidar. Comparing the simulation results of different channels, DR, (color ratio) CR and (lidar ratio) LR have a good logarithmic fitting relationship at 532 nm and 1064 nm, which helps to classify the aerosol types. On this basis, a new inversion algorithm, "1β+1α+2δ", was presented. By this algorithm, the backscattering coefficient (β), extinction coefficient (α), DR (δ) at 532 nm and 1064 nm can be used to expand the range of inversion and compare lidar data with different configurations to obtain more extensive optical characteristics of aerosols. Our study enhances the application of laser remote sensing in aerosol observations more accurately.
Collapse
|
6
|
Vertical Structure of Dust Aerosols Observed by a Ground-Based Raman Lidar with Polarization Capabilities in the Center of the Taklimakan Desert. REMOTE SENSING 2022. [DOI: 10.3390/rs14102461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vertical structure of dust properties in desert sources is crucial for evaluating their long-range transportation and radiative forcing. To investigate vertical profiles of dust optical properties in the Taklimakan Desert, we conducted ground-based polarization Raman lidar measurements in Tazhong (83.39°E, 38.58°N, 1103 m above sea level), located at the center of the Taklimakan Desert in the summer of 2019. The lidar system developed by Lanzhou University for continuous network observation is capable of measuring polarization at 532 and 355 nm and detecting Raman signals at 387, 407, and 607 nm. The results indicate that dust aerosols in the central Taklimakan Desert were regularly lifted over 6 km during the summer with a mass concentration of 400–1000 µg m−3, while the majority of the dust remained restricted within 2 km. Moreover, the height of the boundary layer can reach 5–6 km in the afternoon under the strong convention. Above 3 km, dust is composed of finer particles with an effective radius (Reff.) less than 3 μm and a Ångström exponent (AE) related to the extinction coefficient (AEE)532,355 greater than 4; below 3 km, however, dust is dominated by coarser particles. In addition, the particle depolarization ratios (PDR) of Taklimakan dust are 0.32 ± 0.06 at 532 nm and 0.27 ± 0.04 at 355 nm, while the lidar ratios (LRs) are 49 ± 19 sr at 532 nm and 43 ± 12 sr at 355 nm. This study firstly provides information on dust vertical structure and its optical properties in the center of the desert, which may aid in further evaluating their associated impacts on the climate and ecosystem.
Collapse
|
7
|
Polarization Lidar Measurements of Dust Optical Properties at the Junction of the Taklimakan Desert–Tibetan Plateau. REMOTE SENSING 2022. [DOI: 10.3390/rs14030558] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that dust aerosols may accelerate the melting of snow and glaciers over the Tibetan Plateau. To investigate the vertical structure of dust aerosols, we conducted a ground-based observation by using multi-wavelength polarization lidar which is designed for continuous network measurements. In this study, we used the lidar observation from September to October 2020 at the Ruoqiang site (39.0°N, 88.2°E; 894 m ASL), located at the junction of the Taklimakan Desert–Tibetan Plateau. Our results showed that dust aerosols can be lifted up to 5 km from the ground, which is comparable with the elevation of the Tibetan Plateau in autumn with a mass concentration of 400–900 μg m−3. Moreover, the particle depolarization ratio (PDR) of the lifted dust aerosols at 532 nm and 355 nm are 0.34 ± 0.03 and 0.25 ± 0.04, respectively, indicating the high degree of non-sphericity in shape. In addition, extinction-related Ångström exponents are very small (0.11 ± 0.24), implying the large values in size. Based on ground-based lidar observation, this study proved that coarse non-spherical Taklimakan dust with high concentration can be transported to the Tibetan Plateau, suggesting its possible impacts on the regional climate and ecosystem.
Collapse
|
8
|
Zhou Z, Ge Y, Liu Y. Real-time monitoring of carbon concentration using laser-induced breakdown spectroscopy and machine learning. OPTICS EXPRESS 2021; 29:39811-39823. [PMID: 34809337 DOI: 10.1364/oe.443732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The spectral analysis based on laser-induced breakdown spectroscopy (LIBS) is an effective approach to carbon concentration monitoring. In this work, a novel LIBS-based method, together with a system designed independently, was developed for carbon monitoring. The experiments were conducted in two modes: static and dynamic. In static monitoring, gases in three scenarios were selected to represent different carbon concentrations, based on which measurements of carbon concentrations were performed through a mathematical model. Then, K-nearest Neighbors (KNN) was adopted for classification, and its accuracy could reach 99.17%, which can be applied for the identification of gas composition and pollution traceability. In dynamic monitoring, respiration and fossil fuel combustion were selected because of their important roles in increasing carbon concentration. In addition, the simulation of combustion degree was performed by the radial basis function (RBF) based on the spectral information, where the accuracy reached 96.41%, which is the first time that LIBS is proposed to be used for combustion prediction. The innovative approach derived from LIBS and machine learning algorithms is fast, online, and in-situ, showing far-reaching application prospects in real-time monitoring of carbon concentrations.
Collapse
|