1
|
Hayasaki Y, Onodeara R, Kumagai K, Hasegawa S. Automatic generation of a holographically shaped beam in an actual optical system for use in material laser processing. OPTICS EXPRESS 2023; 31:1982-1991. [PMID: 36785221 DOI: 10.1364/oe.477886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/11/2022] [Indexed: 06/18/2023]
Abstract
In-system optimization involves designing a computer-generated hologram (CGH) in an actual optical system. An important advantage of this approach is automatic generation of a target shaped beam with compensation for imperfections in the actual optical system that would degrade the reconstruction performance. We developed a novel in-system optimization method for beam shaping based on our previous research where it had been applied only to generate parallel focused beams. The key point in the application to beam shaping is to accurately express the conditions and coordinates of the actual optical system in the CGH calculation.
Collapse
|
2
|
Sun J, Wu J, Wu S, Goswami R, Girardo S, Cao L, Guck J, Koukourakis N, Czarske JW. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. LIGHT, SCIENCE & APPLICATIONS 2022; 11:204. [PMID: 35790748 PMCID: PMC9255502 DOI: 10.1038/s41377-022-00898-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 05/29/2023]
Abstract
Quantitative phase imaging (QPI) is a label-free technique providing both morphology and quantitative biophysical information in biomedicine. However, applying such a powerful technique to in vivo pathological diagnosis remains challenging. Multi-core fiber bundles (MCFs) enable ultra-thin probes for in vivo imaging, but current MCF imaging techniques are limited to amplitude imaging modalities. We demonstrate a computational lensless microendoscope that uses an ultra-thin bare MCF to perform quantitative phase imaging with microscale lateral resolution and nanoscale axial sensitivity of the optical path length. The incident complex light field at the measurement side is precisely reconstructed from the far-field speckle pattern at the detection side, enabling digital refocusing in a multi-layer sample without any mechanical movement. The accuracy of the quantitative phase reconstruction is validated by imaging the phase target and hydrogel beads through the MCF. With the proposed imaging modality, three-dimensional imaging of human cancer cells is achieved through the ultra-thin fiber endoscope, promising widespread clinical applications.
Collapse
Affiliation(s)
- Jiawei Sun
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
| | - Jiachen Wu
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, 100084, Beijing, China
| | - Song Wu
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, 100084, Beijing, China
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Nektarios Koukourakis
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
| | - Juergen W Czarske
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Sun J, Wu J, Koukourakis N, Cao L, Kuschmierz R, Czarske J. Real-time complex light field generation through a multi-core fiber with deep learning. Sci Rep 2022; 12:7732. [PMID: 35546604 PMCID: PMC9095618 DOI: 10.1038/s41598-022-11803-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
The generation of tailored complex light fields with multi-core fiber (MCF) lensless microendoscopes is widely used in biomedicine. However, the computer-generated holograms (CGHs) used for such applications are typically generated by iterative algorithms, which demand high computation effort, limiting advanced applications like fiber-optic cell manipulation. The random and discrete distribution of the fiber cores in an MCF induces strong spatial aliasing to the CGHs, hence, an approach that can rapidly generate tailored CGHs for MCFs is highly demanded. We demonstrate a novel deep neural network-CoreNet, providing accurate tailored CGHs generation for MCFs at a near video rate. The CoreNet is trained by unsupervised learning and speeds up the computation time by two magnitudes with high fidelity light field generation compared to the previously reported CGH algorithms for MCFs. Real-time generated tailored CGHs are on-the-fly loaded to the phase-only spatial light modulator (SLM) for near video-rate complex light fields generation through the MCF microendoscope. This paves the avenue for real-time cell rotation and several further applications that require real-time high-fidelity light delivery in biomedicine.
Collapse
Affiliation(s)
- Jiawei Sun
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany. .,Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
| | - Jiachen Wu
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany. .,State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China.
| | - Nektarios Koukourakis
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.,Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - Robert Kuschmierz
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.,Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
| | - Juergen Czarske
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany. .,Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany. .,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany. .,Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|