1
|
Liang D, Ren J, Liu H, Yang Y, Ambar A, Sun Y, Wang C. Efficient Strategy for Radiative Cooling Based on Ultra-Broad-Band Infrared Regulation of Flexible Bilayer Film. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54875-54885. [PMID: 37967347 DOI: 10.1021/acsami.3c10493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Flexible thermal radiation films with adjustable broad-band infrared radiation could maintain various heat-generating electronic devices working stably in corresponding operating temperatures, making them good candidates for radiative cooling (RC) material. However, the controllable radiation peaks of the metamaterial were narrow, and manipulation was a time-consuming and complex process. Herein, we design a simple TiN/Si bilayer film with controllable broad-band radiation peaks at a thermal radiation wavelength of 3.5-20 μm by impedance matching. Meanwhile, the different bilayer films applied to aluminum devices at different temperatures exhibit outstanding heat dissipation efficiency and maintain the corresponding equilibrium temperature to ensure that devices work stably for a long time. Moreover, the bilayer films deposited on the flexible PI substrates exhibit preferable thermostability and higher tensile strength than existing radiative cooling materials deposited on PDMS, PE, PMMA or TPX, etc. This work provides an effective strategy to realize efficient radiation cooling for flexible electronic devices and spacecraft appendages.
Collapse
Affiliation(s)
- Dongdong Liang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, P. R. China
| | - Jie Ren
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Huan Liu
- School of Energy and Power Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yingxin Yang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, P. R. China
| | - Atsha Ambar
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Ying Sun
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Cong Wang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, P. R. China
- School of Physics, Beihang University, Beijing 100191, P. R. China
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
2
|
Kim H, Yoo YJ, Yun JH, Heo SY, Song YM, Yeo WH. Outdoor Worker Stress Monitoring Electronics with Nanofabric Radiative Cooler-Based Thermal Management. Adv Healthc Mater 2023; 12:e2301104. [PMID: 37548604 DOI: 10.1002/adhm.202301104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/18/2023] [Indexed: 08/08/2023]
Abstract
Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field-deployability for continuous health monitoring. Moreover, no prior work shows a wearable device that can endure heat exposure while showing continuous monitoring of a subject's stress under realistic working environments. Herein, a soft, field-deployable, wearable bioelectronic system is introduced for detecting outdoor workers' stress levels with negligible motion artifacts and controllable thermal management. A nanofabric radiative cooler (NFRC) and miniaturized sensors with a nanomembrane soft electronic platform are integrated to measure stable electrodermal activities and temperature in hot outdoor conditions. The NFRC exhibits outstanding cooling performance in sub-ambient air with high solar reflectivity and high thermal emissivity. The integrated wearable device with all embedded electronic components and the NFRC shows a lower temperature (41.1%) in sub-ambient air than the NFRC-less device while capturing improved operation time (18.2%). In vivo human study of the bioelectronics with agricultural activities demonstrates the device's capability for portable, continuous, real-time health monitoring of outdoor workers with field deployability.
Collapse
Affiliation(s)
- Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Young Jin Yoo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Joo Ho Yun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Se-Yeon Heo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Anti-Viral Research Center, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Neural Engineering Center, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Wang L, Dong J, Zhang W, Zheng C, Liu L. Deep Learning Assisted Optimization of Metasurface for Multi-Band Compatible Infrared Stealth and Radiative Thermal Management. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1030. [PMID: 36985924 PMCID: PMC10058171 DOI: 10.3390/nano13061030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Infrared (IR) stealth plays a vital role in the modern military field. With the continuous development of detection technology, multi-band (such as near-IR laser and middle-IR) compatible IR stealth is required. Combining rigorous coupled wave analysis (RCWA) with Deep Learning (DL), we design a Ge/Ag/Ge multilayer circular-hole metasurface capable of multi-band IR stealth. It achieves low average emissivity of 0.12 and 0.17 in the two atmospheric windows (3~5 μm and 8~14 μm), while it achieves a relatively high average emissivity of 0.61 between the two atmospheric windows (5~8 μm) for the purpose of radiative thermal management. Additionally, the metasurface has a narrow-band high absorptivity of 0.88 at the near-infrared wavelength (1.54 μm) for laser guidance. For the optimized structure, we also analyze the potential physical mechanisms. The structure we optimized is geometrically simple, which may find practical applications aided with advanced nano-fabrication techniques. Also, our work is instructive for the implementation of DL in the design and optimization of multifunctional IR stealth materials.
Collapse
Affiliation(s)
- Lei Wang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Optics and Thermal Radiation Research Center, Shandong University, Qingdao 266237, China
| | - Jian Dong
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Optics and Thermal Radiation Research Center, Shandong University, Qingdao 266237, China
| | - Wenjie Zhang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Optics and Thermal Radiation Research Center, Shandong University, Qingdao 266237, China
| | - Chong Zheng
- Science and Technology on Optical Radiation Laboratory, Beijing 100854, China
| | - Linhua Liu
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Optics and Thermal Radiation Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Ko JH, Kim DH, Hong SH, Kim SK, Song YM. Polarization-driven thermal emission regulator based on self-aligned GST nanocolumns. iScience 2022; 26:105780. [PMID: 36590160 PMCID: PMC9800319 DOI: 10.1016/j.isci.2022.105780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The increasing advances in thermal radiation regulators have attracted growing interest, particularly in infrared sources, thermal management, and camouflage. Despite many advances in dynamic thermal emitters with great controllability, sustained external energy is required to maintain the desired emission. In this study, we present a polarization-driven thermal emission regulator based on a two-way control: i) phase change and ii) polarization tuning. Based on a conventional, non-volatile phase change material, i.e., Ge2Sb2Te5 (GST), we newly introduce an anisotropic medium for facile emissivity regulation without heat energy consumption. A rigorous coupled-wave analysis method provides design guidelines for finding optimal structural parameters. We utilized a simple glancing angle deposition process which induces tilted self-aligned nanocolumns with anisotropic properties. The fabricated sample shows polarization-sensitive thermal regulation through thermal imaging spectroscopic measurement. Additionally, we manufactured a multispectral visibly/thermally camouflaged patch that identifies encrypted information at a specific polarization state for a proof-of-concept demonstration.
Collapse
Affiliation(s)
- Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Do Hyeon Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sung-Hoon Hong
- ICT Materials and Components Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Sun-Kyung Kim
- Department of Applied Physics, Kyung Hee University, Gyeonggi-do, Yongin-si 17104, Republic of Korea,Corresponding author
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea,Anti-Viral Research Center, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea,AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea,Corresponding author
| |
Collapse
|
5
|
Ko JH, Yoo YJ, Lee Y, Jeong HH, Song YM. A review of tunable photonics: Optically active materials and applications from visible to terahertz. iScience 2022; 25:104727. [PMID: 35865136 PMCID: PMC9294196 DOI: 10.1016/j.isci.2022.104727] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The next frontier of photonics is evolving into reconfigurable platforms with tunable functions to realize the ubiquitous application. The dynamic control of optical properties of photonics is highly desirable for a plethora of applications, including optical communication, dynamic display, self-adaptive photonics, and multi-spectral camouflage. Recently, to meet the dynamic response over broad optical bands, optically active materials have been integrated with the diverse photonic platforms, typically in the dimension of micro/nanometer scales. Here, we review recent advances in tunable photonics with controlling optical properties from visible to terahertz (THz) spectral range. We propose guidelines for designing tunable photonics in conjunction with optically active materials, inherent in wavelength characteristics. In particular, we devote our review to their potential uses for five different applications: structural coloration, metasurface for flat optics, photonic memory, thermal radiation, and terahertz plasmonics. Finally, we conclude with an outlook on the challenges and prospects of tunable photonics.
Collapse
Affiliation(s)
- Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Jin Yoo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yubin Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Anti-Viral Research Center, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|