Gao M, Lüpken NM, Fallnich C. Highly efficient and widely tunable Si
3N
4 waveguide-based optical parametric oscillator.
OPTICS EXPRESS 2024;
32:10899-10909. [PMID:
38570952 DOI:
10.1364/oe.515511]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
We demonstrate an efficient and widely tunable synchronously pumped optical parametric oscillator (OPO) exploiting four-wave mixing (FWM) in a silicon nitride (Si3N4) waveguide with inverted tapers. At a pump pulse duration of 2 ps, the waveguide-based OPO (WOPO) exhibited a high external pump-to-idler conversion efficiency of up to -7.64 dB at 74% pump depletion and a generation of up to 387 pJ output idler pulse energy around 1.13 μm wavelength. Additionally, the parametric oscillation resulted in a 64 dB amplification of idler power spectral density in comparison to spontaneous FWM, allowing for a wide idler wavelength tunability of 191 nm around 1.15 μm. Our WOPO represents a significant improvement of conversion efficiency as well as output energy among χ3 WOPOs, rendering an important step towards a highly efficient and widely tunable chip-based light source for, e.g., coherent anti-Stokes Raman scattering.
Collapse