Gholizadeh E, Jafari B, Golmohammadi S. Graphene-based optofluidic tweezers for refractive-index and size-based nanoparticle sorting, manipulation, and detection.
Sci Rep 2023;
13:1975. [PMID:
36737494 PMCID:
PMC9898258 DOI:
10.1038/s41598-023-29122-w]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
This work proposes a novel design composed of graphene nanoribbons-based optofluidic tweezers to manipulate and sort bio-particles with radii below 2.5 nm. The suggested structure has been numerically investigated by the finite difference time domain (FDTD) method employing Maxwell's stress tensor analysis (MST). The finite element method (FEM) has been used to obtain the electrostatic response of the proposed structure. The tweezer main path is a primary channel in the center of the structure, where the microfluidic flow translates the nanoparticle toward this channel. Concerning the microfluid's drag force, the nanoparticles tend to move along the length of the main channel. The graphene nanoribbons are fixed near the main channel at different distances to exert optical forces on the moving nanoparticles in the perpendicular direction. In this regard, sub-channels embedding in the hBN layer on the Si substrate deviate bio-particles from the main path for particular nanoparticle sizes and indices. Intense hotspots with electric field enhancements up to 900 times larger than the incident light are realized inside and around the graphene ribbons. Adjusting the gap distance between the graphene nanoribbon and the main channel allows us to separate the individual particle with a specific size from others, thus guiding that in the desired sub-channel. Furthermore, we demonstrated that in a structure with a large gap between channels, particles experience weak field intensity, leading to a low optical force that is insufficient to detect, trap, and manipulate nanoparticles. By varying the chemical potential of graphene associated with the electric field intensity variations in the graphene ribbons, we realized tunability in sorting nanoparticles while structural parameters remained constant. In fact, by adjusting the graphene Fermi level via the applied gate voltage, nanoparticles with any desired radius will be quickly sorted. Moreover, we exhibited that the proposed structure could sort nanoparticles based on their refractive indices. Therefore, the given optofluidic tweezer can easily detect bio-particles, such as cancer cells and viruses of tiny size.
Collapse