1
|
Yu D, Lou S, Ou X, Yu P, Duan H, Hu Y. Polarization Independent Dynamic Beam Steering based on Liquid Crystal Integrated Metasurface. Sci Rep 2024; 14:23627. [PMID: 39384898 PMCID: PMC11464778 DOI: 10.1038/s41598-024-72680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Digital Micromirror Devices, extensively employed in projection displays offer rapid, polarization-independent beam steering. However, they are constrained by microelectromechanical system limitations, resulting in reduced resolution, limited beam steering angle and poor stability, which hinder further performance optimization. Liquid Crystal on Silicon technology, employing liquid crystal (LC) and silicon chip technology, with properties of high resolution, high contrast and good stability. Nevertheless, its polarization-dependent issues lead to complex system and low efficiency in device applications. This paper introduces a hybrid integration of metallic metasurface with nematic LC, facilitating a polarization-independent beam steering device capable of large-angle deflections. Employing principles of geometrical phase and plasmonic resonances, the metallic metasurface, coupled with an electronically controlled LC, allows for dynamic adjustment, achieving a maximum deflection of ± 27.1°. Additionally, the integration of an LC-infused dielectric grating for dynamic phase modulation and the metasurface for polarization conversion ensures uniform modulation effects across all polarizations within the device. We verify the device's large-angle beam deflection capability and polarization insensitivity effect in simulations and propose an optimization scheme to cope with the low efficiency of individual diffraction stages.
Collapse
Affiliation(s)
- Dian Yu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Shaozhen Lou
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiangnian Ou
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ping Yu
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Huigao Duan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
- Advanced Manufacturing Laboratory of Micro-Nano Optical Devices, Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
- Advanced Manufacturing Laboratory of Micro-Nano Optical Devices, Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Corsetti S, Notaros M, Sneh T, Stafford A, Page ZA, Notaros J. Silicon-photonics-enabled chip-based 3D printer. LIGHT, SCIENCE & APPLICATIONS 2024; 13:132. [PMID: 38839804 PMCID: PMC11153580 DOI: 10.1038/s41377-024-01478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Imagine if it were possible to create 3D objects in the palm of your hand within seconds using only a single photonic chip. Although 3D printing has revolutionized the way we create in nearly every aspect of modern society, current 3D printers rely on large and complex mechanical systems to enable layer-by-layer addition of material. This limits print speed, resolution, portability, form factor, and material complexity. Although there have been recent efforts in developing novel photocuring-based 3D printers that utilize light to transform matter from liquid resins to solid objects using advanced methods, they remain reliant on bulky and complex mechanical systems. To address these limitations, we combine the fields of silicon photonics and photochemistry to propose the first chip-based 3D printer. The proposed system consists of only a single millimeter-scale photonic chip without any moving parts that emits reconfigurable visible-light holograms up into a simple stationary resin well to enable non-mechanical 3D printing. Furthermore, we experimentally demonstrate a stereolithography-inspired proof-of-concept version of the chip-based 3D printer using a visible-light beam-steering integrated optical phased array and visible-light-curable resin, showing 3D printing using a chip-based system for the first time. This work demonstrates the first steps towards a highly-compact, portable, and low-cost solution for the next generation of 3D printers.
Collapse
Affiliation(s)
- Sabrina Corsetti
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Milica Notaros
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tal Sneh
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alex Stafford
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jelena Notaros
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
3
|
Notaros M, Dyer T, Garcia Coleto A, Hattori A, Fealey K, Kruger S, Notaros J. Mechanically-flexible wafer-scale integrated-photonics fabrication platform. Sci Rep 2024; 14:10623. [PMID: 38724580 PMCID: PMC11082232 DOI: 10.1038/s41598-024-61055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
The field of integrated photonics has advanced rapidly due to wafer-scale fabrication, with integrated-photonics platforms and fabrication processes being demonstrated at both infrared and visible wavelengths. However, these demonstrations have primarily focused on fabrication processes on silicon substrates that result in rigid photonic wafers and chips, which limit the potential application spaces. There are many application areas that would benefit from mechanically-flexible integrated-photonics wafers, such as wearable healthcare monitors and pliable displays. Although there have been demonstrations of mechanically-flexible photonics fabrication, they have been limited to fabrication processes on the individual device or chip scale, which limits scalability. In this paper, we propose, develop, and experimentally characterize the first 300-mm wafer-scale platform and fabrication process that results in mechanically-flexible photonic wafers and chips. First, we develop and describe the 300-mm wafer-scale CMOS-compatible flexible platform and fabrication process. Next, we experimentally demonstrate key optical functionality at visible wavelengths, including chip coupling, waveguide routing, and passive devices. Then, we perform a bend-durability study to characterize the mechanical flexibility of the photonic chips, demonstrating bending a single chip 2000 times down to a bend diameter of 0.5 inch with no degradation in the optical performance. Finally, we experimentally characterize polarization-rotation effects induced by bending the flexible photonic chips. This work will enable the field of integrated photonics to advance into new application areas that require flexible photonic chips.
Collapse
Affiliation(s)
- Milica Notaros
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Thomas Dyer
- New York Center for Research, Economic Advancement, Technology, Engineering, and Science, Albany, NY, 12203, USA
| | - Andres Garcia Coleto
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ashton Hattori
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin Fealey
- New York Center for Research, Economic Advancement, Technology, Engineering, and Science, Albany, NY, 12203, USA
| | - Seth Kruger
- New York Center for Research, Economic Advancement, Technology, Engineering, and Science, Albany, NY, 12203, USA
| | - Jelena Notaros
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Notaros M, Coleto AG, Raval M, Notaros J. Integrated liquid-crystal-based variable-tap devices for visible-light amplitude modulation. OPTICS LETTERS 2024; 49:1041-1044. [PMID: 38359248 DOI: 10.1364/ol.511189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
In this Letter, we propose and experimentally demonstrate the first, to our knowledge, integrated liquid-crystal-based (LC-based) variable-tap devices for visible-light amplitude modulation. These devices leverage the birefringence of LC medium to actively tune the coupling coefficient between two waveguides. First, we develop the device structure, theory of operation, and design procedure. Next, we summarize the fabrication and LC packaging procedure for these devices. Finally, we experimentally demonstrate amplitude modulation with 15.4-dB tap-port extinction within ±3.1 V for a 14-µm-long device at a 637-nm operating wavelength. These small-form-factor variable-tap devices provide a compact and low-power solution to integrated visible-light amplitude modulation and will enable future high-density integrated visible-light systems.
Collapse
|
5
|
Shekhar S, Bogaerts W, Chrostowski L, Bowers JE, Hochberg M, Soref R, Shastri BJ. Roadmapping the next generation of silicon photonics. Nat Commun 2024; 15:751. [PMID: 38272873 PMCID: PMC10811194 DOI: 10.1038/s41467-024-44750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
Silicon photonics has developed into a mainstream technology driven by advances in optical communications. The current generation has led to a proliferation of integrated photonic devices from thousands to millions-mainly in the form of communication transceivers for data centers. Products in many exciting applications, such as sensing and computing, are around the corner. What will it take to increase the proliferation of silicon photonics from millions to billions of units shipped? What will the next generation of silicon photonics look like? What are the common threads in the integration and fabrication bottlenecks that silicon photonic applications face, and which emerging technologies can solve them? This perspective article is an attempt to answer such questions. We chart the generational trends in silicon photonics technology, drawing parallels from the generational definitions of CMOS technology. We identify the crucial challenges that must be solved to make giant strides in CMOS-foundry-compatible devices, circuits, integration, and packaging. We identify challenges critical to the next generation of systems and applications-in communication, signal processing, and sensing. By identifying and summarizing such challenges and opportunities, we aim to stimulate further research on devices, circuits, and systems for the silicon photonics ecosystem.
Collapse
Affiliation(s)
- Sudip Shekhar
- Department of Electrical & Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, V6T1Z4, BC, Canada.
| | - Wim Bogaerts
- Department of Information Technology, Ghent University - IMEC, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium
| | - Lukas Chrostowski
- Department of Electrical & Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, V6T1Z4, BC, Canada
| | - John E Bowers
- Department of Electrical & Computer Engineering, University of California Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Michael Hochberg
- Luminous Computing, 4750 Patrick Henry Drive, Santa Clara, 95054, CA, USA
| | - Richard Soref
- College of Science and Mathematics, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, 02125, MA, USA
| | - Bhavin J Shastri
- Department of Physics, Engineering Physics & Astronomy, Queen's University, 64 Bader Lane, Kingston, K7L3N6, ON, Canada.
| |
Collapse
|
6
|
Suh J, Kim G, Park H, Fan S, Park N, Yu S. Photonic Topological Spin Pump in Synthetic Frequency Dimensions. PHYSICAL REVIEW LETTERS 2024; 132:033803. [PMID: 38307059 DOI: 10.1103/physrevlett.132.033803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
Reducing geometrical complexity while preserving desired wave properties is critical for proof-of-concept studies in wave physics, as evidenced by recent efforts to realize photonic synthetic dimensions, isospectrality, and hyperbolic lattices. Laughlin's topological pump, which elucidates quantum Hall states in cylindrical geometry with a radial magnetic field and a time-varying axial magnetic flux, is a prime example of these efforts. Here we propose a two-dimensional dynamical photonic system for the topological pumping of pseudospin modes by exploiting synthetic frequency dimensions. The system provides the independent control of pseudomagnetic fields and electromotive forces achieved by the interplay between mode-dependent and mode-independent gauge fields. To address the axial open boundaries and azimuthal periodicity of the system, we define the adjusted local Chern marker with rotating azimuthal coordinates, proving the nontrivial topology of the system. We demonstrate the adiabatic pumping for crosstalk-free frequency conversion with wave front molding. Our approach allows for reproducing Laughlin's thought experiment at room temperature with a scalable setup.
Collapse
Affiliation(s)
- Joseph Suh
- Intelligent Wave Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Gyunghun Kim
- Intelligent Wave Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Hyungchul Park
- Intelligent Wave Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Shanhui Fan
- Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Namkyoo Park
- Photonic Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Sunkyu Yu
- Intelligent Wave Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Notaros M, DeSantis DM, Raval M, Notaros J. Liquid-crystal-based visible-light integrated optical phased arrays and application to underwater communications. OPTICS LETTERS 2023; 48:5269-5272. [PMID: 37831844 DOI: 10.1364/ol.494387] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023]
Abstract
In this Letter, we present the first, to the best of our knowledge, liquid-crystal-based integrated optical phased arrays (OPAs) that enable visible-light beam forming and steering. A cascaded OPA architecture is developed and experimentally shown to emit a beam in the far field at a 632.8-nm wavelength with a power full width at half maximum of 0.4°×1.6° and 7.2° beam-steering range within ±3.4 V. Furthermore, we show the first visible-light integrated-OPA-based free-space-optical-communications transmitter and use it to demonstrate the first integrated-OPA-based underwater-wireless-optical-communications link. We experimentally demonstrate a 1-Gbps on-off-keying link through water and an electronically-switchable point-to-multipoint link with channel selectivity greater than 19 dB through a water-filled tank.
Collapse
|
8
|
Iyer V, Issadore DA, Aflatouni F. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. LAB ON A CHIP 2023; 23:2553-2576. [PMID: 37114950 DOI: 10.1039/d2lc01163h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Since the field's inception, pioneers in microfluidics have made significant progress towards realizing complete lab-on-chip systems capable of sophisticated sample analysis and processing. One avenue towards this goal has been to join forces with the related field of microelectronics, using integrated circuits (ICs) to perform on-chip actuation and sensing. While early demonstrations focused on using microfluidic-IC hybrid chips to miniaturize benchtop instruments, steady advancements in the field have enabled a new generation of devices that expand past miniaturization into high-performance applications that would not be possible without IC hybrid integration. In this review, we identify recent examples of labs-on-chip that use high-resolution, high-speed, and multifunctional electronic and photonic chips to expand the capabilities of conventional sample analysis. We focus on three particularly active areas: a) high-throughput integrated flow cytometers; b) large-scale microelectrode arrays for stimulation and multimodal sensing of cells over a wide field of view; c) high-speed biosensors for studying molecules with high temporal resolution. We also discuss recent advancements in IC technology, including on-chip data processing techniques and lens-free optics based on integrated photonics, that are poised to further advance microfluidic-IC hybrid chips.
Collapse
Affiliation(s)
- Vasant Iyer
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David A Issadore
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Firooz Aflatouni
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Lin Y, Yong Z, Luo X, Azadeh SS, Mikkelsen JC, Sharma A, Chen H, Mak JCC, Lo PGQ, Sacher WD, Poon JKS. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform. Nat Commun 2022; 13:6362. [PMID: 36289213 PMCID: PMC9606291 DOI: 10.1038/s41467-022-34100-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Visible and near-infrared spectrum photonic integrated circuits are quickly becoming a key technology to address the scaling challenges in quantum information and biosensing. Thus far, integrated photonic platforms in this spectral range have lacked integrated photodetectors. Here, we report silicon nitride-on-silicon waveguide photodetectors that are monolithically integrated in a visible light photonic platform on silicon. Owing to a leaky-wave silicon nitride-on-silicon design, the devices achieved a high external quantum efficiency of >60% across a record wavelength span from λ ~ 400 nm to ~640 nm, an opto-electronic bandwidth up to 9 GHz, and an avalanche gain-bandwidth product up to 173 ± 30 GHz. As an example, a photodetector was integrated with a wavelength-tunable microring in a single chip for on-chip power monitoring.
Collapse
Affiliation(s)
- Yiding Lin
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
| | - Zheng Yong
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Xianshu Luo
- Advanced Micro Foundry Pte Ltd, 11 Science Park Road, Singapore Science Park II, 117685, Singapore, Singapore
| | - Saeed Sharif Azadeh
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Jared C Mikkelsen
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Ankita Sharma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Hong Chen
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Jason C C Mak
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Patrick Guo-Qiang Lo
- Advanced Micro Foundry Pte Ltd, 11 Science Park Road, Singapore Science Park II, 117685, Singapore, Singapore
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
| |
Collapse
|
10
|
Li C, Chen B, Ruan Z, Wu H, Zhou Y, Liu J, Chen P, Chen K, Guo C, Liu L. High modulation efficiency and large bandwidth thin-film lithium niobate modulator for visible light. OPTICS EXPRESS 2022; 30:36394-36402. [PMID: 36258568 DOI: 10.1364/oe.469065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
We experimentally demonstrate an integrated visible light modulator at 532 nm on the thin-film lithium niobate platform. The waveguides on such platform feature a propagation loss of 2.2 dB/mm while a grating for fiber interface has a coupling loss of 5 dB. Our fabricated modulator demonstrates a low voltage-length product of 1.1 V·cm and a large electro-optic bandwidth with a roll-off of -1.59 dB at 25 GHz for a length of 3.3 mm. This device offers a compact and large bandwidth solution to the challenge of integrated visible wavelength modulation in lithium niobate and paves the way for future small-form-factor integrated systems at visible wavelengths.
Collapse
|