1
|
Liu W, Li Y, Li Z, Du X, Xie S, Liu C, Jiang S, Li Z. 3D flexible compositing resonant cavity system for high-performance SERS sensing. OPTICS EXPRESS 2023; 31:6925-6937. [PMID: 36823938 DOI: 10.1364/oe.481784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Arrayed resonant cavity with outstanding optical trapping ability have received increasing attention in surface-enhanced Raman spectroscopy (SERS). Here, a three-dimensional (3D) composite AgNPs-Al2O3/Au/inverted patterned sapphire substrate PMMA (IPSSPMMA) flexible resonant cavity system is theoretically and experimentally investigated as a flexible SERS sensor. With the help of an effective plasma coupling (localized surface plasmons (LSPs) and surface plasmon polaritons (SPPs)), as shown by the Finite Element Method, a resonant cavity between IPSSPMMA and a particle-film nanostructure is created. Moreover, the proposed fabrication scheme can be easily used for large-scale fabrication. To measure the performance of IPSSPMMA, Rhodamine 6 G (R6G) and Crystalline violet (CV) were used as probe molecules with limit of detection (LOD) of 6.01 × 10-12 M and 5.36 × 10-10 M, respectively, and enhancement factors (EF) of R6G up to 8.6 × 109. Besides, in-situ detection of CV on the surface of aquatic products with a LOD of 3.96 × 10-5 M, enables highly sensitive in-situ detection of surface analytes. The Raman performance and in-situ detection results demonstrate that the proposed flexible compositing resonant cavity system has the advantages of ultra-sensitivity, stability, uniformity, and reproducibility, and has great potential for applications in the food safety field.
Collapse
|
2
|
Ilbeygi E, Sharifi A, Jahanbakhshian M, Sheykhifard Z, Mohseni SM, Karimzadeh R. Utilization of smartphones for the evaluation of Gr/Ni nanostructures magnetically controlled based on optical fibers surface plasmons. OPTICS EXPRESS 2023; 31:2177-2194. [PMID: 36785237 DOI: 10.1364/oe.477020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
In the suggested optical fiber-based magnetoplasmonic system, we investigated the magnetic properties of graphene/nickel nanostructures. The plasmonic mode changes under the magnetic field observed in the intensity diagrams over time. To be accessible, cheap, and portable, we used a smartphone as a detector and processor. Considering the ambient noise and the light source, it was reported that the intensity of the changes improved up to 5 times. Further, the clad corrosion experiment carried out by pure dimethyl ketone in an intensity modulation by a smartphone camera and 10 seconds suggested removing fluorine polymer clad.
Collapse
|
3
|
Shafi M, Duan P, Liu W, Zhang W, Zhang C, Hu X, Zha Z, Liu R, Liu C, Jiang S, Man B, Liu M. SERS Sensing Using Graphene-Covered Silver Nanoparticles and Metamaterials for the Detection of Thiram in Soil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16183-16193. [PMID: 36520051 DOI: 10.1021/acs.langmuir.2c02941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multilayer hyperbolic metamaterial (HMM)-based SERS substrates have received special consideration because they accommodate various propagation modes such as surface plasmonic polaritons (SPP). However, the SPP modes are difficult to generate in HMM due to their weak electric field enhancement. In this article, we designed novel SERS substrates consisting of graphene-covered AgNPs and HMM. The graphene-covered AgNPs work as an external coupling structure for hyperbolic metamaterials due to this structure exhibiting significant plasmonic effects as well as unique optical features. The localized surface plasmonic resonance (LSPR) of the graphene-covered AgNPs excited the SPP and thus formed a strong hot spot zone in the nanogap area of the graphene. The Raman experiment was performed using rhodamine 6G (R6G) and crystal violet (CV), which showed high stability and a maximum enhancement factor of 2.12 × 108. The COMSOL simulation further clarified that enhanced SERS performance was due to the presence of monolayer graphene and provided an atomically flat surface for organic molecules in a more controllable manner. Interestingly, the proposed SERS structure carries out quantitative detection of thiram in soil and can satisfy the basic environmental need for pesticide residue in the soil.
Collapse
Affiliation(s)
- Muhammad Shafi
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Pengyi Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Wenying Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Wenjie Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Can Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Xiaoxuan Hu
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Zhipeng Zha
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Runcheng Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Cong Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Shouzhen Jiang
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| | - Mei Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250038, China
| |
Collapse
|
4
|
Wang L, Li Z. Smart Nanostructured Materials for SARS-CoV-2 and Variants Prevention, Biosensing and Vaccination. BIOSENSORS 2022; 12:1129. [PMID: 36551096 PMCID: PMC9775677 DOI: 10.3390/bios12121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised great concerns about human health globally. At the current stage, prevention and vaccination are still the most efficient ways to slow down the pandemic and to treat SARS-CoV-2 in various aspects. In this review, we summarize current progress and research activities in developing smart nanostructured materials for COVID-19 prevention, sensing, and vaccination. A few established concepts to prevent the spreading of SARS-CoV-2 and the variants of concerns (VOCs) are firstly reviewed, which emphasizes the importance of smart nanostructures in cutting the virus spreading chains. In the second part, we focus our discussion on the development of stimuli-responsive nanostructures for high-performance biosensing and detection of SARS-CoV-2 and VOCs. The use of nanostructures in developing effective and reliable vaccines for SARS-CoV-2 and VOCs will be introduced in the following section. In the conclusion, we summarize the current research focus on smart nanostructured materials for SARS-CoV-2 treatment. Some existing challenges are also provided, which need continuous efforts in creating smart nanostructured materials for coronavirus biosensing, treatment, and vaccination.
Collapse
Affiliation(s)
- Lifeng Wang
- Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Zhiwei Li
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
5
|
Phuong NTT, Nguyen TA, Huong VT, Tho LH, Anh DT, Ta HKT, Huy TH, Trinh KTL, Tran NHT. Sensors for Detection of the Synthetic Dye Rhodamine in Environmental Monitoring Based on SERS. MICROMACHINES 2022; 13:mi13111840. [PMID: 36363861 PMCID: PMC9694732 DOI: 10.3390/mi13111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 05/05/2023]
Abstract
This article presents a review of many types of SERS sensors for food safety and environmental pollution monitoring based on detecting rhodamine. It introduces the basic concepts of substrates, enhancement factors, and mechanisms, devices' sensors integrated with the microstructure. Here, we review the state-of-the-art research in the field of rhodamine monitoring and highlight the applications of SERS sensors. The trends in the development of substrates for different applications have been mentioned with the aim of providing an overview of the development of different SERS substrates. Thus, an efficient approach for rhodamine detection has a good perspective for application in environmental monitoring.
Collapse
Affiliation(s)
- Nguyen Tran Truc Phuong
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thuy-An Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang City 550000, Vietnam
| | - Vu Thi Huong
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Korea
| | - Le Hong Tho
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Do Thao Anh
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hanh Kieu Thi Ta
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Tran Huu Huy
- Quy Nhon College of Engineering and Technology, Quy Nhon 590000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, Seongnam 13120, Korea
- Correspondence: (K.T.L.T.); (N.H.T.T.)
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Correspondence: (K.T.L.T.); (N.H.T.T.)
| |
Collapse
|