1
|
Nurrohman DT, Chiu NF, Hsiao YS, Lai YJ, Nanda HS. Advances in Nanoplasmonic Biosensors: Optimizing Performance for Exosome Detection Applications. BIOSENSORS 2024; 14:307. [PMID: 38920611 PMCID: PMC11201745 DOI: 10.3390/bios14060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
The development of sensitive and specific exosome detection tools is essential because they are believed to provide specific information that is important for early detection, screening, diagnosis, and monitoring of cancer. Among the many detection tools, surface-plasmon resonance (SPR) biosensors are analytical devices that offer advantages in sensitivity and detection speed, thereby making the sample-analysis process faster and more accurate. In addition, the penetration depth of the SPR biosensor, which is <300 nm, is comparable to the size of the exosome, making the SPR biosensor ideal for use in exosome research. On the other hand, another type of nanoplasmonic sensor, namely a localized surface-plasmon resonance (LSPR) biosensor, has a shorter penetration depth of around 6 nm. Structural optimization through the addition of supporting layers and gap control between particles is needed to strengthen the surface-plasmon field. This paper summarizes the progress of the development of SPR and LSPR biosensors for detecting exosomes. Techniques in signal amplification from two sensors will be discussed. There are three main parts to this paper. The first two parts will focus on reviewing the working principles of each sensor and introducing several methods that can be used to isolate exosomes. This article will close by explaining the various sensor systems that have been developed and the optimizations carried out to obtain sensors with better performance. To illustrate the performance improvements in each sensor system discussed, the parameters highlighted include the detection limit, dynamic range, and sensitivity.
Collapse
Affiliation(s)
- Devi Taufiq Nurrohman
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Yu-Sheng Hsiao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Da-an District, Taipei 10607, Taiwan;
| | - Yun-Ju Lai
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Laboratory, Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing, Jabalpur 482005, India;
| |
Collapse
|
2
|
Olaya CM, Hayazawa N, Balgos MH, Tanaka T. Dynamic measurement of an angular Goos-Hänchen shift at a surface plasmon resonance in liquid. APPLIED OPTICS 2023; 62:8426-8433. [PMID: 38037948 DOI: 10.1364/ao.501856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
We developed a surface plasmon resonance (SPR)-enhanced angular Goos-Hänchen (GH) shift measurement system capable of tracking small refractive index changes with high sensitivity in a liquid environment. Our method can be performed in angular interrogation schemes, where we demonstrate a simple zero-finding algorithm to locate the SPR angle instead of the complicated data processing algorithms used in conventional sensors. We also propose a displacement interrogation scheme for dynamic measurement of small refractive index changes in the sample. The main advantage of our method is the controllability of the measured displacement by standard geometrical optics, allowing measurement sensitivity enhancement without the need to modify the sensor material.
Collapse
|
3
|
Li L, Du L, Zong X, Liu Y. VIS-NIR TMOKE enhanced dielectric-metal hybrid structure for high performance dual-channel sensing. OPTICS EXPRESS 2023; 31:35880-35891. [PMID: 38017750 DOI: 10.1364/oe.502432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/29/2023] [Indexed: 11/30/2023]
Abstract
Magneto-plasmon sensors based on the transverse magneto-optical Kerr effect (TMOKE) have been extensively studied in recent years. In this paper, we theoretically propose a hybrid structure composed of a one-dimensional bismuth iron garnet: yttrium iron garnet (BIG: YIG) nanowire arrays and thin film stack, which is grown on an infinite thick silicon wafer. The thin film stack, from top to bottom, consists of the following layers: BIG: YIG, SiO2, and Au. By exciting the magnetic dipole resonance mode between the cylindrical nanowires and the SPP mode on the surface of the Au film, dual-channel sensing has been achieved in both visible and infrared spectra. The results demonstrate that the TMOKE response spectrum of the structure supports ultra-narrow linewidths of 0.03 nm in the visible light range and 1.54 nm in the infrared range. By changing the refractive index of the analyte, the detected sensitivity of the sensor system in visible and infrared bands is 553 nm RIU-1 and 285 nm RIU-1, and the Figure of merit (FOM) can reach up to 69125 RIU-1 and 303 RIU-1, respectively. This work provides a theoretical basis and a feasible approach for the design of dual channel gas sensors.
Collapse
|
4
|
Li R, Fan H, Chen Y, Huang J, Liu GL, Huang L. Application of nanoplasmonic biosensors based on nanoarrays in biological and chemical detection. OPTICS EXPRESS 2023; 31:21586-21613. [PMID: 37381254 DOI: 10.1364/oe.470786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 06/30/2023]
Abstract
Technological innovation, cost effectiveness, and miniaturization are key factors that determine the commercial adaptability and sustainability of sensing platforms. Nanoplasmonic biosensors based on nanocup or nanohole arrays are attractive for the development of various miniaturized devices for clinical diagnostics, health management, and environmental monitoring. In this review, we discuss the latest trends in the engineering and development of nanoplasmonic sensors as biodiagnostic tools for the highly sensitive detection of chemical and biological analytes. We focused on studies that have explored flexible nanosurface plasmon resonance systems using a sample and scalable detection approach in an effort to highlight multiplexed measurements and portable point-of-care applications.
Collapse
|
5
|
Chen Y, Xiong X, Chen Y, Chen L, Liu G, Xiao W, Shi J, Chen Z, Luo Y. MoS 2-Nanoflower and Nanodiamond Co-Engineered Surface Plasmon Resonance for Biosensing. BIOSENSORS 2023; 13:bios13050506. [PMID: 37232867 DOI: 10.3390/bios13050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Surface plasmon resonance (SPR) based sensors play an important role in the biological and medical fields, and improving the sensitivity is a goal that has always been pursued. In this paper, a sensitivity enhancement scheme jointly employing MoS2 nanoflower (MNF) and nanodiamond (ND) to co-engineer the plasmonic surface was proposed and demonstrated. The scheme could be easily implemented via physically depositing MNF and ND overlayers on the gold surface of an SPR chip, and the overlayer could be flexibly adjusted by controlling the deposition times, thus approaching the optimal performance. The bulk RI sensitivity was enhanced from 9682 to 12,219 nm/RIU under the optimal condition that successively deposited MNF and ND 1 and 2 times. The proposed scheme was proved in an IgG immunoassay, where the sensitivity was twice enhanced compared to the traditional bare gold surface. Characterization and simulation results revealed that the improvement arose from the enhanced sensing field and increased antibody loading via the deposited MNF and ND overlayer. At the same time, the versatile surface property of NDs allowed a specifically-functionalized sensor using the standard method compatible with a gold surface. Besides, the application for pseudorabies virus detection in serum solution was also demonstrated.
Collapse
Affiliation(s)
- Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Xin Xiong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Yu Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Guishi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jifu Shi
- Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Zhe Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Ji Y, Cai G, Liang C, Gao Z, Lin W, Ming Z, Feng S, Zhao H. A microfluidic immunosensor based on magnetic separation for rapid detection of okadaic acid in marine shellfish. Anal Chim Acta 2023; 1239:340737. [PMID: 36628732 DOI: 10.1016/j.aca.2022.340737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Okadaic acid (OA) is a marine biotoxin that accumulates in seafood and can cause diarrheic shellfish poisoning if consumed. Accordingly, many countries have established regulatory limits for the content of OA in shellfish. At present, methods used for the detection of marine toxins are time-consuming and labor-intensive. In order to realize rapid, simple, and accurate detection of OA, we developed a novel microfluidic immunosensor based on magnetic beads modified with a highly specific and sensitive monoclonal antibody (mAb) against OA that is used in conjunction with smartphone imaging to realize the rapid detection of OA in shellfish. The method achieves on-site detection results within 1 h with an IC50 value of 3.30 ng/mL for OA and a limit of detection (LOD) of 0.49 ng/mL. In addition, the analysis of real samples showed that the recoveries for spiked shellfish samples ranged from 84.91% to 95.18%, and the results were confirmed by indirect competitive enzyme-linked immunosorbent assay (icELISA), indicating that the method has good accuracy and precision. Furthermore, the results are reported in a specially designed smartphone app. The microfluidic immunosensor has the advantages of simple operation, rapid detection, and high sensitivity, providing a reliable technical solution for detecting OA residues in shellfish.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Cheng Liang
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zehang Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, 510150, China
| | - Weimin Lin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Zizhen Ming
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|