1
|
Cao X, Tang W, Gao H, Wang Y, Chen Y, Gao C, Zhao F, Su L. SODL-IR-FISTA: sparse online dictionary learning with iterative reduction FISTA for cone-beam X-ray luminescence computed tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:5162-5179. [PMID: 39296417 PMCID: PMC11407256 DOI: 10.1364/boe.531828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/21/2024]
Abstract
Cone beam X-ray luminescence computed tomography (CB-XLCT) is an emerging imaging technique with potential for early 3D tumor detection. However, the reconstruction challenge due to low light absorption and high scattering in tissues makes it a difficult inverse problem. In this study, the online dictionary learning (ODL) method, combined with iterative reduction FISTA (IR-FISTA), has been utilized to achieve high-quality reconstruction. Our method integrates IR-FISTA for efficient and accurate sparse coding, followed by an online stochastic approximation for dictionary updates, effectively capturing the sparse features inherent to the problem. Additionally, a re-sparse step is introduced to enhance the sparsity of the solution, making it better suited for CB-XLCT reconstruction. Numerical simulations and in vivo experiments were conducted to assess the performance of the method. The SODL-IR-FISTA achieved the smallest location error of 0.325 mm in in vivo experiments, which is 58% and 45% of the IVTCG-L 1 (0.562 mm) and OMP-L 0 (0.721 mm), respectively. Additionally, it has the highest DICE similarity coefficient, which is 0.748. The results demonstrate that our approach outperforms traditional methods in terms of localization precision, shape restoration, robustness, and practicality in live subjects.
Collapse
Affiliation(s)
- Xin Cao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Wenlong Tang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Huimin Gao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yifan Wang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yi Chen
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide SA 5005, Australia
| | - Chengyi Gao
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Fengjun Zhao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Linzhi Su
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| |
Collapse
|
2
|
Chen X, Meng Y, Wang L, Zhou W, Chen D, Xie H, Ren S. Highly robust reconstruction framework for three-dimensional optical imaging based on physical model constrained neural networks. Phys Med Biol 2024; 69:075020. [PMID: 38394682 DOI: 10.1088/1361-6560/ad2ca3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Objective. The reconstruction of three-dimensional optical imaging that can quantitatively acquire the target distribution from surface measurements is a serious ill-posed problem. Traditional regularization-based reconstruction can solve such ill-posed problem to a certain extent, but its accuracy is highly dependent ona priorinformation, resulting in a less stable and adaptable method. Data-driven deep learning-based reconstruction avoids the errors of light propagation models and the reliance on experience and a prior by learning the mapping relationship between the surface light distribution and the target directly from the dataset. However, the acquisition of the training dataset and the training of the network itself are time consuming, and the high dependence of the network performance on the training dataset results in a low generalization ability. The objective of this work is to develop a highly robust reconstruction framework to solve the existing problems.Approach. This paper proposes a physical model constrained neural networks-based reconstruction framework. In the framework, the neural networks are to generate a target distribution from surface measurements, while the physical model is used to calculate the surface light distribution based on this target distribution. The mean square error between the calculated surface light distribution and the surface measurements is then used as a loss function to optimize the neural network. To further reduce the dependence ona prioriinformation, a movable region is randomly selected and then traverses the entire solution interval. We reconstruct the target distribution in this movable region and the results are used as the basis for its next movement.Main Results. The performance of the proposed framework is evaluated with a series of simulations andin vivoexperiment, including accuracy robustness of different target distributions, noise immunity, depth robustness, and spatial resolution. The results collectively demonstrate that the framework can reconstruct targets with a high accuracy, stability and versatility.Significance. The proposed framework has high accuracy and robustness, as well as good generalizability. Compared with traditional regularization-based reconstruction methods, it eliminates the need to manually delineate feasible regions and adjust regularization parameters. Compared with emerging deep learning assisted methods, it does not require any training dataset, thus saving a lot of time and resources and solving the problem of poor generalization and robustness of deep learning methods. Thus, the framework opens up a new perspective for the reconstruction of three-dimension optical imaging.
Collapse
Affiliation(s)
- Xueli Chen
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, People's Republic of China
| | - Yu Meng
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| | - Lin Wang
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, People's Republic of China
| | - Wangting Zhou
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| | - Duofang Chen
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| | - Hui Xie
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| | - Shenghan Ren
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| |
Collapse
|
3
|
Li S, Wang B, Yu J, He X, Guo H, He X. FSMN-Net: a free space matching network based on manifold convolution for optical molecular tomography. OPTICS LETTERS 2024; 49:1161-1164. [PMID: 38426963 DOI: 10.1364/ol.512235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Optical molecular tomography (OMT) can monitor glioblastomas in small animals non-invasively. Although deep learning (DL) methods have made remarkable achievements in this field, improving its generalization against diverse reconstruction systems remains a formidable challenge. In this Letter, a free space matching network (FSMN-Net) was presented to overcome the parameter mismatch problem in different reconstruction systems. Specifically, a novel, to the best of our knowledge, manifold convolution operator was designed by considering the mathematical model of OMT as a space matching process. Based on the dynamic domain expansion concept, an end-to-end fully convolutional codec further integrates this operator to realize robust reconstruction with voxel-level accuracy. The results of numerical simulations and in vivo experiments demonstrate that the FSMN-Net can stably generate high-resolution reconstruction volumetric images under different reconstruction systems.
Collapse
|
4
|
Li S, Wang B, Yu J, Kang D, He X, Guo H, He X. 3D-deep optical learning: a multimodal and multitask reconstruction framework for optical molecular tomography. OPTICS EXPRESS 2023; 31:23768-23789. [PMID: 37475220 DOI: 10.1364/oe.490139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.
Collapse
|
5
|
Chen Y, Du M, Zhang G, Zhang J, Li K, Su L, Zhao F, Yi H, Cao X. Sparse reconstruction based on dictionary learning and group structure strategy for cone-beam X-ray luminescence computed tomography. OPTICS EXPRESS 2023; 31:24845-24861. [PMID: 37475302 DOI: 10.1364/oe.493797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
As a dual-modal imaging technology that has emerged in recent years, cone-beam X-ray luminescence computed tomography (CB-XLCT) has exhibited promise as a tool for the early three-dimensional detection of tumors in small animals. However, due to the challenges imposed by the low absorption and high scattering of light in tissues, the CB-XLCT reconstruction problem is a severely ill-conditioned inverse problem, rendering it difficult to obtain satisfactory reconstruction results. In this study, a strategy that utilizes dictionary learning and group structure (DLGS) is proposed to achieve satisfactory CB-XLCT reconstruction performance. The group structure is employed to account for the clustering of nanophosphors in specific regions within the organism, which can enhance the interrelation of elements in the same group. Furthermore, the dictionary learning strategy is implemented to effectively capture sparse features. The performance of the proposed method was evaluated through numerical simulations and in vivo experiments. The experimental results demonstrate that the proposed method achieves superior reconstruction performance in terms of location accuracy, target shape, robustness, dual-source resolution, and in vivo practicability.
Collapse
|
6
|
Chen Y, Du M, Zhang J, Zhang G, Su L, Li K, Zhao F, Yi H, Wang L, Cao X. Generalized conditional gradient method with adaptive regularization parameters for fluorescence molecular tomography. OPTICS EXPRESS 2023; 31:18128-18146. [PMID: 37381530 DOI: 10.1364/oe.486339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/08/2023] [Indexed: 06/30/2023]
Abstract
Fluorescence molecular tomography (FMT) is an optical imaging technology with the ability of visualizing the three-dimensional distribution of fluorescently labelled probes in vivo. However, due to the light scattering effect and ill-posed inverse problems, obtaining satisfactory FMT reconstruction is still a challenging problem. In this work, to improve the performance of FMT reconstruction, we proposed a generalized conditional gradient method with adaptive regularization parameters (GCGM-ARP). In order to make a tradeoff between the sparsity and shape preservation of the reconstruction source, and to maintain its robustness, elastic-net (EN) regularization is introduced. EN regularization combines the advantages of L1-norm and L2-norm, and overcomes the shortcomings of traditional Lp-norm regularization, such as over-sparsity, over-smoothness, and non-robustness. Thus, the equivalent optimization formulation of the original problem can be obtained. To further improve the performance of the reconstruction, the L-curve is adopted to adaptively adjust the regularization parameters. Then, the generalized conditional gradient method (GCGM) is used to split the minimization problem based on EN regularization into two simpler sub-problems, which are determining the direction of the gradient and the step size. These sub-problems are addressed efficiently to obtain more sparse solutions. To assess the performance of our proposed method, a series of numerical simulation experiments and in vivo experiments were implemented. The experimental results show that, compared with other mathematical reconstruction methods, GCGM-ARP method has the minimum location error (LE) and relative intensity error (RIE), and the maximum dice coefficient (Dice) in the case of different sources number or shape, or Gaussian noise of 5%-25%. This indicates that GCGM-ARP has superior reconstruction performance in source localization, dual-source resolution, morphology recovery, and robustness. In conclusion, the proposed GCGM-ARP is an effective and robust strategy for FMT reconstruction in biomedical application.
Collapse
|