Bao YQ, Li BX, Zhang HF. Tunable origami metastructure based on liquid crystal for curvature sensing.
OPTICS EXPRESS 2024;
32:6432-6445. [PMID:
38439346 DOI:
10.1364/oe.517881]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 03/06/2024]
Abstract
In this paper, a liquid crystal (LC) tunable origami metastructure (OMS) designed for curvature sensing on cylindrical surfaces to measure their curvature is introduced. The LC employed is K15 (5CB) and the applicable band is 0.36∼23 GHz. When excited by electromagnetic waves (EMWs) within the 4∼16 GHz, the resonance frequency of the OMS shifts from 10.24 GHz to 10.144 GHz, corresponding to a change in absorption amplitude ranging from 0.773 to 0.920. In terms of curvature sensing, the detectable range of curvature spans from 0 to 0.327 mm-1. The maximum sensitivity (S) achieved for curvature measurement reaches 0.918/mm-1, accompanied by a quality factor (Q-factor) of 25.88. The proposed OMS embodies numerous excellent traits, including wide-range sensing capabilities and heightened S, promising for applications in bionic skin, smart robotics, and related fields.
Collapse