Zhou CT, He XT, Chew LY. Intense short-pulse lasers irradiating wire and hollow plasma fibers.
OPTICS LETTERS 2011;
36:924-926. [PMID:
21403730 DOI:
10.1364/ol.36.000924]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
When an intense laser pulse irradiates a solid-density foil target, electrons produced at the relativistic critical density can be accelerated to relativistic energy by the ponderomotive force. When a plasma fiber is attached to the back of the foil, the produced relativistic electrons are guided to propagate along the fiber for a long distance, because the high-current electron beam induces strong radial electric fields in the fiber. Transport and heating of intense laser-driven relativistic electrons in both wire and hollow plasma fibers are compared theoretically and numerically. We found that the coupling efficiency from the laser to the plasma fiber depends on the fiber structure. Because of the enhanced return currents in the wire fiber, the temperature in the wire fiber is higher than that in the hollow fiber.
Collapse