1
|
Bernert C, Assenbaum S, Brack FE, Cowan TE, Curry CB, Garten M, Gaus L, Gauthier M, Göde S, Goethel I, Glenzer SH, Kluge T, Kraft S, Kroll F, Kuntzsch M, Metzkes-Ng J, Loeser M, Obst-Huebl L, Rehwald M, Schlenvoigt HP, Schoenwaelder C, Schramm U, Siebold M, Treffert F, Ziegler T, Zeil K. Off-harmonic optical probing of high intensity laser plasma expansion dynamics in solid density hydrogen jets. Sci Rep 2022; 12:7287. [PMID: 35508489 PMCID: PMC9068928 DOI: 10.1038/s41598-022-10797-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Abstract
Due to the non-linear nature of relativistic laser induced plasma processes, the development of laser-plasma accelerators requires precise numerical modeling. Especially high intensity laser-solid interactions are sensitive to the temporal laser rising edge and the predictive capability of simulations suffers from incomplete information on the plasma state at the onset of the relativistic interaction. Experimental diagnostics utilizing ultra-fast optical backlighters can help to ease this challenge by providing temporally resolved inside into the plasma density evolution. We present the successful implementation of an off-harmonic optical probe laser setup to investigate the interaction of a high-intensity laser at [Formula: see text] peak intensity with a solid-density cylindrical cryogenic hydrogen jet target of [Formula: see text] diameter as a target test bed. The temporal synchronization of pump and probe laser, spectral filtering and spectrally resolved data of the parasitic plasma self-emission are discussed. The probing technique mitigates detector saturation by self-emission and allowed to record a temporal scan of shadowgraphy data revealing details of the target ionization and expansion dynamics that were so far not accessible for the given laser intensity. Plasma expansion speeds of up to [Formula: see text] followed by full target transparency at [Formula: see text] after the high intensity laser peak are observed. A three dimensional particle-in-cell simulation initiated with the diagnosed target pre-expansion at [Formula: see text] and post processed by ray tracing simulations supports the experimental observations and demonstrates the capability of time resolved optical diagnostics to provide quantitative input and feedback to the numerical treatment within the time frame of the relativistic laser-plasma interaction.
Collapse
Affiliation(s)
- Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
- Technische Universität Dresden, 01062, Dresden, Germany.
| | - Stefan Assenbaum
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Chandra B Curry
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Marco Garten
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Lennart Gaus
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Maxence Gauthier
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Ilja Goethel
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | | | - Thomas Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Stephan Kraft
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | | | | | - Markus Loeser
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Lieselotte Obst-Huebl
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Martin Rehwald
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | | | - Christopher Schoenwaelder
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Mathias Siebold
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Franziska Treffert
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Technische Universität Darmstadt, 64289, Darmstadt, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| |
Collapse
|
2
|
Liu CS, Tripathi VK. Self-focusing and frequency broadening of an intense short-pulse laser in plasmas. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2001; 18:1714-1718. [PMID: 11444566 DOI: 10.1364/josaa.18.001714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An intense ultrafast laser pulse propagating through a plasma undergoes self-focusing and self-phase-modulation as a result of relativistic mass nonlinearity. The inclusion of a quartic (r4) term in the expansion of the eikonal in the radial coordinate r allows the modification of the shape of the radial intensity profile. The front of the pulse, under the combined effects of time-dependent self-focusing and frequency downshifting, acquires a severely distorted temporal shape. The radial profile for I(lambda)2(mu) < 2.8 x 1018 W/cm2, where I is the axial laser intensity and lambda(mu), is the laser wavelength in micrometers, is transformed from a Gaussian to a super-Gaussian because of the faster convergence of the marginal rays than the paraxial rays. In the opposite case of I(lambda)(2)(mu) > 2.8 x 10(18) W/cm2 when nonlinear plasma permittivity approaches saturation, the radial profile in the axial region becomes broader than the Gaussian.
Collapse
Affiliation(s)
- C S Liu
- Institute for Plasma Research, University of Maryland, College Park 20742, USA
| | | |
Collapse
|