1
|
Meskine O, Descamps E, Keller A, Lemaître A, Baboux F, Ducci S, Milman P. Approaching Maximal Precision of Hong-Ou-Mandel Interferometry with Nonperfect Visibility. PHYSICAL REVIEW LETTERS 2024; 132:193603. [PMID: 38804918 DOI: 10.1103/physrevlett.132.193603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
In quantum mechanics, the precision achieved in parameter estimation using a quantum state as a probe is determined by the measurement strategy employed. The quantum limit of precision is bounded by a value set by the state and its dynamics. Theoretical results have revealed that in interference measurements with two possible outcomes, this limit can be reached under ideal conditions of perfect visibility and zero losses. However, in practice, these conditions cannot be achieved, so precision never reaches the quantum limit. But how do experimental setups approach precision limits under realistic circumstances? In this Letter, we provide a model for precision limits in two-photon Hong-Ou-Mandel interferometry using coincidence statistics for nonperfect visibility and temporally unresolved measurements. We show that the scaling of precision with visibility depends on the effective area in time-frequency phase space occupied by the state used as a probe, and we find that an optimal scaling exists. We demonstrate our results experimentally for different states in a setup where the visibility can be controlled and reaches up to 99.5%. In the optimal scenario, a ratio of 0.97 is observed between the experimental precision and the quantum limit, establishing a new benchmark in the field.
Collapse
Affiliation(s)
- O Meskine
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS UMR 7162, 75013 Paris, France
| | - E Descamps
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS UMR 7162, 75013 Paris, France
- Département de Physique de l'Ecole Normale Supérieure - PSL, 45 rue d'Ulm, 75230 Paris Cedex 05, France
| | - A Keller
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS UMR 7162, 75013 Paris, France
- Department de Physique, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - A Lemaître
- Univ. Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - F Baboux
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS UMR 7162, 75013 Paris, France
| | - S Ducci
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS UMR 7162, 75013 Paris, France
| | - P Milman
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS UMR 7162, 75013 Paris, France
| |
Collapse
|
2
|
Lingaraju NB, Lu HH, Seshadri S, Imany P, Leaird DE, Lukens JM, Weiner AM. Quantum frequency combs and Hong-Ou-Mandel interferometry: the role of spectral phase coherence. OPTICS EXPRESS 2019; 27:38683-38697. [PMID: 31878631 DOI: 10.1364/oe.379749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The Hong-Ou-Mandel interferometer is a versatile tool for analyzing the joint properties of photon pairs, relying on a truly quantum interference effect between two-photon probability amplitudes. While the theory behind this form of two-photon interferometry is well established, the development of advanced photon sources and exotic two-photon states has highlighted the importance of quantifying precisely what information can and cannot be inferred from features in a Hong-Ou-Mandel interference trace. Here we examine Hong-Ou-Mandel interference with regard to a particular class of states, so-called quantum frequency combs, and place special emphasis on the role spectral phase plays in these measurements. We find that this form of two-photon interferometry is insensitive to the relative phase between different comb line pairs. This is true even when different comb line pairs are mutually coherent at the input of a Hong-Ou-Mandel interferometer and the fringe patterns display sharp temporal features. Consequently, Hong-Ou-Mandel interference cannot speak to the presence of high-dimensional frequency-bin entanglement in two-photon quantum frequency combs.
Collapse
|
3
|
Bharadwaj D, Thyagarajan K, Jachura M, Karpiński M, Banaszek K. Scheme for on-chip verification of transverse mode entanglement using the electro-optic effect. OPTICS EXPRESS 2015; 23:33087-33098. [PMID: 26831977 DOI: 10.1364/oe.23.033087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A key ingredient in emerging quantum-enhanced technologies is the ability to coherently manipulate and detect superpositions of basis states. In integrated optics implementations, transverse spatial modes supported by multimode structures offer an attractive carrier of quantum superpositions. Here we propose an integrated dynamic mode converter based on the electro-optic effect in nonlinear channel waveguides for deterministic transformations between mutually non-orthogonal bases of spatial modes. We theoretically show its capability to demonstrate a violation of a Bell-type Clauser-Horne-Shimony-Holt inequality by measuring spatially mode-entangled photon pairs generated by an integrated photon pair source. The proposed configuration, numerically studied for the potassium titanyl phosphate (KTP) material, can be easily implemented using standard integrated optical fabrication technology.
Collapse
|
4
|
Abstract
The Hong-Ou-Mandel (HOM) effect is widely regarded as the quintessential quantum interference phenomenon in optics. In this work we examine how nonlinearity can smear statistical photon bunching in the HOM interferometer. We model both the nonlinearity and a balanced beam splitter with a single two-level system and calculate a finite probability of anti-bunching arising in this geometry. We thus argue that the presence of such nonlinearity would reduce the visibility in the standard HOM setup, offering some explanation for the diminution of the HOM visibility observed in many experiments. We use the same model to show that the nonlinearity affects a resonant two-photon propagation through a two-level impurity in a waveguide due to a “weak photon blockade” caused by the impossibility of double-occupancy and argue that this effect might be stronger for multi-photon propagation.
Collapse
|
5
|
Direct measurement of the biphoton Wigner function through two-photon interference. Sci Rep 2013; 3:3530. [PMID: 24346262 PMCID: PMC3866653 DOI: 10.1038/srep03530] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/28/2013] [Indexed: 11/17/2022] Open
Abstract
The Hong-Ou-Mandel (HOM) experiment was a benchmark in quantum optics, evidencing the non–classical nature of photon pairs, later generalized to quantum systems with either bosonic or fermionic statistics. We show that a simple modification in the well-known and widely used HOM experiment provides the direct measurement of the Wigner function. We apply our results to one of the most reliable quantum systems, consisting of biphotons generated by parametric down conversion. A consequence of our results is that a negative value of the Wigner function is a sufficient condition for non-gaussian entanglement between two photons. In the general case, the Wigner function provides all the required information to infer entanglement using well known necessary and sufficient criteria. The present work offers a new vision of the HOM experiment that further develops its possibilities to realize fundamental tests of quantum mechanics using simple optical set-ups.
Collapse
|
6
|
Corzo N, Marino AM, Jones KM, Lett PD. Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor. OPTICS EXPRESS 2011; 19:21358-21369. [PMID: 22108986 DOI: 10.1364/oe.19.021358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present experimental results on the generation of multi-spatial-mode, single-beam, quadrature squeezed light using four-wave mixing in hot Rb vapor. Squeezing and phase-sensitive deamplification are observed over a range of powers and detunings near the (85)Rb D1 atomic transition. We observe -3 dB of vacuum quadrature squeezing, comparable to the best single-spatial mode results previously reported using atomic vapors, however, produced here in multiple spatial modes. We confirm that the squeezing is present in more than one transverse mode by studying the spatial distribution of the noise properties of the field.
Collapse
Affiliation(s)
- Neil Corzo
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899, USA.
| | | | | | | |
Collapse
|
7
|
Chalopin B, Scazza F, Fabre C, Treps N. Direct generation of a multi-transverse mode non-classical state of light. OPTICS EXPRESS 2011; 19:4405-4410. [PMID: 21369271 DOI: 10.1364/oe.19.004405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Quantum computation and communication protocols require quantum resources which are in the continuous variable regime squeezed and/or quadrature entangled optical modes. To perform more and more complex and robust protocols, one needs sources that can produce in a controlled way highly multimode quantum states of light. One possibility is to mix different single mode quantum resources. Another is to directly use a multimode device, either in the spatial or in the frequency domain. We present here the first experimental demonstration of a device capable of producing simultaneously several squeezed transverse modes of the same frequency and which is potentially scalable. We show that this device, which is an Optical Parametric Oscillator using a self-imaging cavity, produces a multimode quantum resource made of three squeezed transverse modes.
Collapse
Affiliation(s)
- Benoît Chalopin
- Laboratoire Kastler Brossel, Université Pierre et Marie Curie, ENS, CNRS, Paris, France.
| | | | | | | |
Collapse
|
8
|
Brańczyk AM, Fedrizzi A, Stace TM, Ralph TC, White AG. Engineered optical nonlinearity for quantum light sources. OPTICS EXPRESS 2011; 19:55-65. [PMID: 21263542 DOI: 10.1364/oe.19.000055] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many applications in optical quantum information processing benefit from careful spectral shaping of single-photon wave-packets. In this paper we tailor the joint spectral wave-function of photons created in parametric downconversion by engineering the nonlinearity profile of a poled crystal. We designed a crystal with an approximately Gaussian nonlinearity profile and confirmed successful wave-packet shaping by two-photon interference experiments. We numerically show how our method can be applied for attaining one of the currently most important goals of single-photon quantum optics, the creation of pure single photons without spectral correlations.
Collapse
Affiliation(s)
- Agata M Brańczyk
- Center for Quantum Computer Technology, Department of Physics, The University of Queensland, QLD, Australia
| | | | | | | | | |
Collapse
|
9
|
Mosley PJ, Christ A, Eckstein A, Silberhorn C. Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion. PHYSICAL REVIEW LETTERS 2009; 103:233901. [PMID: 20366150 DOI: 10.1103/physrevlett.103.233901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Indexed: 05/29/2023]
Abstract
We present a study of the propagation of higher-order spatial modes in a waveguided parametric down-conversion photon-pair source. Observing the multimode photon-pair spectrum from a periodically poled KTiOPO(4) waveguide allowed us to isolate individual spatial modes through their distinctive spectral properties. We have measured directly the spatial distribution of each mode of the photon pairs, confirming the findings of our waveguide model, and demonstrated by coincidence measurements that the total parity of the modes is conserved in the nonlinear interaction. Furthermore, we show that we can combine the advantages of a waveguide source with the potential to generate spatially entangled photon pairs as in bulk-crystal down-converters.
Collapse
Affiliation(s)
- Peter J Mosley
- Max Planck Institute for the Science of Light, Günther-Scharowsky Strasse 1/Bau 24, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|